Contents

	Preface	xiii
	Acknowledgments	XV
1	Introduction	1
1.1	Collision frequencies	3
1.2	Random-walk estimates for classical transport in a straight	
	magnetic field	6
1.3	Random-walk estimate for ion heat diffusion in a tokamak	10
1.4	Random-walk estimate of Bohm diffusion	11
	Further reading	12
	Exercises	12
2	Kinetic and fluid descriptions of a plasma	14
2.1	The kinetic equation	14
2.2	Fluid equations	16
	Further reading	20
	Exercise	20
3	The collision operator	22
3.1	Derivation of the Fokker–Planck operator	22
3.2	Electron-ion and ion-impurity collisions	30
3.3	Collisions with a Maxwellian background	35
3.4	Collision operator for fast ions	40
3.5	Ion–electron collisions	42
3.6	Collision operator for relativistic particles	43
3.7	The linearized collision operator	47
3.8	Model operator for self-collisions	53
	Further reading	55
	Exercises	56

X	Contents		
4	Plasma fluid equations	59	9 7
4.1	Outline of closure in the case of short mean-free path	59	9.1
4.2	Lorentz plasma	61	9.2
4.3	Onsager symmetry and a variational principle	67	
4.4	Spitzer conductivity	71	Ĺ
4.5	Expansion in orthogonal polynomials	74	
4.6	Braginskii's equations	76	10 /
4.7	Diamagnetic flows	83	10.1
	Further reading	88	10.2
	Exercises	88	
5	Transport in a cylindrical plasma	90	11 '
5.1	Particle transport	90	11.1
5.2	The influence of viscosity on ambipolarity	94	11.2
5.3	Transport of momentum and heat	96	11.3
6	Particle motion	99	11.4
6.1	Equations of motion	99	Ĺ
6.2	Nearly periodic motion	100	
6.3	Guiding-centre motion	103	10
6.4	Other adiabatic invariants	109	12
6.5	The drift kinetic equation	113	12.1
	Further reading	115	12.2
	Exercises	115	12.5
_			12.5
7	Toroidal plasmas	117	12.6
7.1	Magnetic held	117	12.7
7.2	Magnetohydrodynamic equilibrium	121	Ĺ
7.3	Guiding-centre orbits in tokamaks	127	j
7.4	Non-axisymmetric systems	136	12
	Further reading	142	13 1
	Exercises	142	13.1 1
8	Transport in toroidal plasmas	146	13.2
0 Q 1	Transport in toronal plasmas	140	13.4
8.1 8.2	Collisionality	140	13.5
0.2	Distribution function	140	i
0.5 8 /		150	Ì
0.4	Parallal nartials and hast fluxes	155	
0.J 8.6	Flow across flux surfaces	155	14
0.0 Q 7	Confinement time	130	
8.7	Further reading	164	2
	Exercises	164	
		A U I	1

	Contents	xi
9 9.1 9.2	Transport in the Pfirsch–Schlüter regime Ion heat flux Several species <i>Further reading</i> <i>Exercise</i>	167 168 171 178 178
10 10.1 10.2	Transport in the plateau regime Physical picture Transport laws <i>Further reading</i> <i>Exercise</i>	179 179 182 185 185
11 11.1 11.2 11.3 11.4 11.5	Transport in the banana regime Drift kinetic equation Ion transport Electron transport Bootstrap current Variational principle <i>Further reading</i> <i>Exercises</i>	187 187 191 198 205 211 216 216
12 12.1 12.2 12.3 12.4 12.5 12.6 12.7	The moment approach to neoclassical theory The parallel viscous force Plasma flows Collisional regime Plateau regime Banana regime Interpolation between different regimes Ion rotation and bootstrap current at finite aspect ratio <i>Further reading</i> <i>Exercises</i>	219 219 222 227 231 233 236 238 243 244
13 13.1 13.2 13.3 13.4 13.5	Advanced topics Poloidal rotation Toroidal rotation Nonlinear transport in steep plasma profiles Orbit squeezing Neoclassical transport in stellarators Further reading Exercise	246 249 254 260 267 270 270
14	Experimental evidence for neoclassical transport	272
	Appendix Useful formulas Bibliography Index	276 281 287