CONTENTS

Acknowledgments		page ix			
Preface					
I. INTRODUCTION					
	PART A				
1.1	A few simple experiments	ı			
1.2	Equations of motion	5			
1.3	Theoretical survey	8			
PART B					
1.4	A formulation for stratified fluids	11			
1.5	Rudiments of vorticity theory	18			
1.6	Rudiments of viscous boundary layer theory	23			
	2. CONTAINED ROTATING FLUID MOTION:				
	LINEAR THEORIES				
2.1	Classification	28			
2.2	Almost rigid rotation	28			
2.3	The Ekman layer	30			
2.4	Spin-up	34			
2.5	The initial value problem: formulation	38			
2.6	The geostrophic mode	43			
2.7	Inertial waves	51			
2.8	Mean circulation theorem	54			
2.9	Viscous dissipation	56			
2.10	The initial value problem: solution and critique	58			
2.11	Special cases	60			
2.12	Motion in a sphere	63			
2.13	Precession and the problem of forced motions	68			

vi	CONTENTS	
2.1	4 Resonance in a sphere p	age 78
2.1	5 Motion in a cylinder	81
2.1	6 Rossby waves: part one	85
2.1	7 Steady motions and Ekman layers	91
2.1	8 Vertical boundary layers	97
2.1	9 Steady motions and vertical shear layers	106
2.2	o A 'wind-driven' circulation	118
2.2	I Some effects of stratification	124
	3. CONTAINED ROTATING FLUID MOTION: NON-LINEAR THEORIES	
3.1	Introduction	133
3.2	• •	133
3.3		139
3.4	•	145
3.5	•	150
3.6	· ·	153
3.7		160
3.8	•	173
3.9		176
3.1	o Vortex flows and similarity solutions	181
	4. MOTION IN AN UNBOUNDED ROTATING FLUID	
4.1		185
4.2		185
4.3	G	192
4.4	•	200
4.5		204
4.6	•	213
4.7	Time-dependent considerations	222

	••
CONTENTS	V11

5. DEPTH-AVERAGED EQUATIONS: MODELS FOR OCEANIC CIRCULATION

5.1	Introduction	page 225
5.2	Depth-averaged equations	225
5 ∙3	Oceanic models	234
5-4	Steady circulations and inertial boundary layers	238
5.5	Rossby waves: part two	246
5.6	Numerical studies	254
5.7	Flow between concentric spheres	262
	6. STABILITY	
6.1	Introduction	271
6.2	Rayleigh's criterion	271
6.3	Stability of the Ekman layer: experiments	275
6.4	Stability of the Ekman layer: theory	281
6.5	Vertical shear layers	288
6.6	Stratified fluids	292
6.7	Thermal convection in a rotating annulus	293
Notation Guide		
Bibliography and Author Index		
Subject Index		

Supplementary References