Table of Contents	

PF	REFACE	ix
IN	TRODUCTION	ĸiii
Re	ferences x	vii
1 Re	 THE BOLTZMANN EQUATION AS A PHYSICAL AND MATHEMATICAL MODEL 1.1 Different mathematical forms of the kinetic equation 1.2 Peculiarities of kinetic approach for describing physical properties	1 1 6 10 13 21
2	 SURVEY OF MATHEMATICAL APPROACHES TO SOLV ING THE BOLTZMANN EQUATION 2.1 General notes on classification of methods	7- 23 23 25 27 29 30 31 33
Re	ferences	39
3	 MAIN FEATURES OF THE DIRECT NUMERICAL AP- PROACHES 3.1 Discrete velocities and approximation in velocity space 3.2 Approximation in physical space. Finite-difference schemes and iterations	45 45 49 51

v

vi

efere	nces	67
3.6	Quasi Monte Carlo technique	61
3.5	Evaluation of the collision integrals by Monte Carlo technique	58
3.4	Finite volume scheme	56

References

4	DE INC	TERMINISTIC (REGULAR) METHOD FOR SOLV- THE BOLTZMANN EQUATION	69
	$4.1 \\ 4.2$	General features of the method	69
		gration over velocity space	69
	4.3	Exact evaluation of integrals over impact parameters	70
	4.4	Approximation of the collision integrals by quadratic form with constant coefficients	75
	4.5	Simplification for velocity space in the case of isotropic sym-	
		metry	77
Re	efere	nces	83
5	CO	NSTRUCTION OF CONSERVATIVE SCHEME FOR	
	TH	E KINETIC EQUATION	85
	5.1	Different definitions of conservativity	85
	5.2	Conservative splitting method	87
	5.3	Characteristics and advantages of the conservative schemes	93
	5.4	Practical verification of the method	98
	5.5	Conservative method for gas mixtures	103
Re	efere	nces	107
6	PAI	RALLEL ALGORITHMS FOR THE KINETIC EQUA-	
		PN Described invariants that for the direction of the	109
	0.1	Parallel implementation for the direct methods	109
	0.2	Several parallel angliantians of the abasithas	111
	0.3	Examples of parallel applications of the algorithms	113
Re	efere	nces	119
7	AP ME	PLICATION OF THE CONSERVATIVE SPLITTING THOD FOR INVESTIGATING NEAR CONTINUUM S FLOWS	191
	71	Some approaches to solving the Boltzmann equation for weakly	141
	1.1	rarefied gas	121

	7.2	Asymptotic kinetic schemes approximating the Euler and Navier-Stokes equations	124
	7.3	Schemes for flows at low Knudsen numbers	131
Re	efere	nces	137
8	STUDY OF UNIFORM RELAXATION IN KINETIC GAS		S
	TH	EORY	139
	8.1	Spatially uniform (homogeneous) relaxation problem	1 39
	8.2	Obtaining the test solutions for isotropic relaxation	140
	8.3	Some examples of the relaxation problem solutions	146
	8.4	Uniform relaxation for gas mixtures	148
Re	efere	nces	153
9	NO	NUNIFORM RELAXATION PROBLEM AS A BASIC	C
	MO	DEL FOR DESCRIPTION OF OPEN SYSTEMS	155
	9.1	Formulation of the problem and solution methods	155
	9.2	Nonclassical behavior of macroscopic parameters	159
	9.3	Behavior of the distribution function and macroscopic pa-	101
	~ .	rameters	164
	9.4	Possible entropy decrease	167
	9.5	Some generalizations	171
Re	efere	nces	179
10	ON	E-DIMENSIONAL KINETIC PROBLEMS	181
	10.1	The problem of heat transfer \ldots	181
	10.2	Shock wave structure	188
	10.3	Flow in the field of an external force	197
	10.4	Recondensation of a mixture in a force field	203
Re	efere	nces	207
11	MU	LTI-DIMENSIONAL PROBLEMS. STUDY OF FREI	E
	JET	FLOWS	211
	11.1	Possibilities of direct integration approaches for studying	
		multi-dimensional problems	211
	11.2	Formulation of the problem and numerical scheme	212
	11.3	Free plane jet	214
	11.4	Axisymmetric and three-dimensional free jet flows	215
Re	efere	nces	225

vii

viii

12 THE BOLTZMANN EQUATION AND THE DESCRIP	-
TION OF UNSTABLE FLOWS	227
12.1 Main notions	227
12.2 Boltzmann and Navier-Stokes description	228
12.3 Mathematical apparatus	230
12.4 Some results of numerical modelling	231
References	239
13 SOLUTIONS OF SOME MULTI-DIMENSIONAL PROB	-
LEMS	241
13.1 Unsteady problem of a shock wave reflection from a wedge .	241
13.2 Solution for focusing of a shock wave	250
13.3 Study of flows in elements of cryovacuum devices	254
13.4 Flows in the vacuum cryomodulus	260
13.5 Two-component mixture flows with cryocondensation \cdot	263
References	269
14 SPECIAL HYPERSONIC FLOWS AND FLOWS WITH	ł
VERY HIGH TEMPERATURES	271
14.1 Special hypersonic flows	271
14.2 Unsteady flows caused by a powerful point discharge of a	
finite gaseous mass	274
14.3 Asymptotic solution at $t \to 0$	277
14.4 Numerical analysis. Asymptotic solution at $t \to \infty$	281
14.5 Scattering of impulsive molecular beam	286
References	293