Contents

Foreword	xiii	
Preface		
Acknowledgements	xxi	
1. THE CAUSAL ENIGMA	1	
1.1 Microcosm—is it causal or bitemporal?	1	
1.2 The neoclassical electromagnetic theory	5	
1.3 Causal theories—incomplete in microcosm	7	
2. PHOTONS IN BITEMPORAL MICROCOSM	11	
2.1 Introduction	11	
2.2 Plane photon pulses in the bitemporal time domain	16	
2.2.1 Classical photon pulses in the regular time domain	17	
2.2.2 Photons in the negative time domain-parity reversal	17	
2.2.3 Generalization of photon pulse energy	21	
2.2.4 The role of antiphotons in the matching process	22	
2.3 The photon routing process	23	
2.4 Photon doublets—the new entities	27	
2.4.1 Spatially localized photon doublets	29	
2.4.2 Entangled photon doublets	33	
2.4.3 The CPT theorem for photon doublets	33	
2.5 Concluding remarks	35	
3. NEOCLASSICAL ELECTROMAGNETICS	39	
3.1 Definition of the generalized circuit	39	
3.2 Generalized circuit equation	42	
3.2.1 Virtual terminals of the generalized circuit	44	
3.2.2 Stored energy in the generalized circuit	44	
3.2.3 Stored energy at positive frequencies	45	
3.2.4 Stored energy at negative frequencies	49	
3.3 General definition of photon doublets	51	
3.3.1 Stored energy of doublets	52	
3.3.2 Photon doublet resonances	54	

	3.3.3 3.3.4 3.3.5 3.4 The 3.4.1 3.4.2 3.4.3 APPENI A.1 Fiel A.2 Rec A.2.1 A.2.2	Doublet resonances—spontaneous excitation? Doublet spectral energy density Quantum mechanical ZPE fluctuations e scattering formulation of circuit response Stored energy in the scattering formulation Scattering relations for negative frequencies Doublet scattering relations and resonances DIX TO CHAPTER 3 d Equations iprocity Formulations for the Generalized Circuit Generalized admittance matrix Generalized voltage and current representation	$56 \\ 58 \\ 61 \\ 64 \\ 65 \\ 66 \\ 67 \\ 68 \\ 68 \\ 69 \\ 71 \\ 72 \\ 73$
	A.2.3	Transformation of the circuit to different bases	15
4.	ARE E	LECTRON MEDIA BITEMPORAL?	75
	4.1 Dou	blet interactions in collisionless plasmas	75
	4.1.1	Plasma response to general photon doublets	76
	4.1.2	Plasma response to electric and magnetic doublets	80
	4.2 Ditte	Bitemporal scattering parameters	82
	4.2.2	Scatter dominated regime	83
	4.3 Bite	emporal DC conduction in a circular wire	86
	4.3.1	The symmetric conduction mode	86
	4.3.2	Dual states of the symmetric mode	89
	4.3.3 4.3.4	Lossless conducting state	90 91
	4.3.5	The antisymmetric conduction modes	93
	4.3.6	Comparison with the BCS superconducting theory	95
5.	PHOT	ON WAVE-PARTICLE TRANSITION	99
	5.1 Intr	oduction—the paradox	99
	5.1.1	Neoclassical theory of photon transition	100
	5.2 Cla	ssical time average macroscopic transition	103
	5.3 Wa	ve to particle transition of single photons	105
	5.3.1	Verification of zero time average doublet admixture	107
	5.4 Pho	oton emission and absorption by atoms	110
	5.5 Pho	bton wave to particle transition in striplines	114
	5.5.2	Complete photon reflection	119
	5.5.3	Complete photon absorption	120
	5.5.4	Lateral resolution of the particlelike photon beam	122
	5.5.5	Numerical simulations of photon flow pattern	124 195
	0.0.0	vermeation of zero time average doublet admixture	140
6.	PHOT	ONS IN GENERAL NETWORKS	129
	6.1 Cla	ssical circuit modeling	129
	6.2 Sing	gle photon predicament in general circuits	134

6.2.1 Quantum mechanical interpretation	135 136
0.2.2 Classical electromagnetics—at a loss	100
6.3 1 Bouting of photons in the network	137
6.3.2 Concept of independent network terminals	145
6.3.3 Microscopic causality gone	147
7. DOUBLE SLIT EXPERIMENT FOR PHOTONS	151
7.1 Introduction—the paradoxes	151
7.1.1 Neoclassical interpretation	152
7.2 Classical macroscopic model	155
7.2.1 Slit plate scattering of space harmonics	155
7.2.2 Macroscopic transmission and reflection	158
7.2.3 Macrophotons—a macroscopic concept	± 160
7.2.4 Numerical simulations of macrophoton power numerical simulations of macrophoton routing	165 ×
7.3 1 General criteria for single photon transmission	166
7.3.2 General criteria for single photon reflection	168
7.3.3 Transmission of photons to local screen spots	169
7.3.4 Numerical simulations of transmitted photons	172
7.3.5 Reflection of photons at the slit plate	173
7.3.6 Numerical simulations of reflected single photons	174
7.3.7 Minimization of environmental energy fluctuation	1S 175
7.3.8 Analysis of spot buildup of diffraction pattern	100
7.4 Numerical procedure of spot build up pattern	183
APPENDIX TO CHAPTER 7	185
A.1 Fields in the double slit plate system	185
A.1.1 A special adaptation of the field equations	186
A.1.2 Field solutions in the free space regions	190
A.I.3 Slit plate convolution matrix	191
A.1.4 Shi plate orthogonal eigenvectors A 1.5 Separation of fields in the slit plate region	192
A 1.6 Open slit fields of the nullspace set U ₀	197
A.1.7 Solid slit plate fields of the range set U_1	197
A.1.8 Slit plate boundary conditions	199
A.2 Slit plate scattering matrix	201
A.2.1 Symmetry properties of the slit plate	202
A.2.2 Scattering matrix for the overall configuration	203
8. DOUBLE SLIT EXPERIMENT FOR ELECTRON	IS 205
8.1 Introduction—the paradoxes	205
8.2 Electromagnetic fields of the double slit plate	209
8.2.1 Can single electrons excite the slit fields?	213
8.2.2 Discrete momentum levels of the slit plate	214
8.2.3 Deflection of electrons traversing the slits	218
8.2.4 Angular spread in the slits	220
8.3 Diffraction pattern with numerical simulations	225

8.3.1 Frauenhofer diffraction pattern	226
8.3.2 Quantum mechanical electron waves	229
8.4 Neoclassical theory of electron diffraction from a slit	single 230
9. THE ENIGMATIC 1/F NOISE	233
9.1 What is $1/f$ noise?	233
9.2 Hooge's empirical 1/f hypothesis	234
9.3 Photon excitation of 1/f noise	235
9.3.1 The DC photon state-definition and interpreta	tion 237
9.3.2 Behavior of single DC photon pulses	242
9.3.3 The radial transmission line-appropriate mode	91 247
9.4 Macroscopic scattering in the radial resistor system	1 252
9.5 Single photon absorption and reflection at the resis	tor 254
9.5.2 A theoretical 'Hooge' formula	259
9.5.3 A modified 'Hooge' formula	260
9.5.4 The 1/f noise phenomenon—more than just no	oise 261
9.6 Concluding remarks	262
10. QUESTIONING STERN-GERLACH	265
10.1 Basis of the Stern-Gerlach experiment	265
10.1.1 Standard description of the SG experiment	266
10.2 The flaw in the Stern-Gerlach theory	269
10.2.1 Multipole expansion of the magnetic field	271
10.2.2 Is the sliver atom model adequate:	272
	214
11. PHOTON TUNNELING—SUPERLUMINAL?	277
11.1 Photon tunneling in a microwave configuration	277
11.1.1 Macroscopic 'tunneling'	280
11.1.3 Superluminal tunneling	281
	201
APPENDIX IO CHAPTER II	285
A.1 Scattering matrix of the tunneling section	285
12. INTERFEROMETRIC EXPERIMENTS	289
12.1 Introduction	289
12.2 Neoclassical theory of the beam splitter	290
12.2.1 Macroscopic properties of the beam splitter	290
12.2.2 Single photons in the beam splitter	293
12.2.3 Quantum mechanical view	294 205
12.3. The Mach-Zehnder interferometer	230
12.3.1 Macroscopic response of the interferometer	299
12.3.2 Single photon response of the interferometer	299
12.3.3 Photon signal flow in the interferometer paths	301

ELECTROMAGNETIC AND QUANTUM MEASUREMENTS

х

Contents	xi
12.4 Mach-Zehnder delayed choice experiment 12.4.1 Cosmic delayed choice experiments	$\begin{array}{c} 303\\311 \end{array}$
13. THE FAMOUS EPR PARADOX	315
13.1 Introduction	315
13.2 The basic EPR configuration	316
13.2.1 Macroscopic properties of the polarizer	316
13.2.2 Single photons in the polarizer	318
13.2.3 Quantum theory of the polarizer	319
13.2.4 Neoclassical theory of the polarizer	319
13.3 Neoclassical theory of the EPR configuration	322
13.3.1 EPR with aligned polarizers	323
13.3.2 EPR with nonaligned polarizers	024 207
13.4 The EPR paradox in neoclassical interpretation	321
13.4.1 Dell's theorem in light of the neoclassical theory	331
13.4.3 The Aspect delayed choice EPR experiment	332
14. QUANTUM BASES–NEOCLASSICAL VIEW	337
14.1 Introduction	337
14.2 Quantum principles and 'foolish questions'	338
14.3 The uncertainty relation—how uncertain?	342
14.3.1 Heuristic derivation of the uncertainty relation	344
14.3.2 Heisenberg Microscope—uncertainty and duality	349
14.3.3 Electron diffraction in a slit	352
14.3.4 Neoclassical uncertainty—a different kind	354
14.4 Collapse of the wave function-the measurement problem	356
14.4.1 The measurement problem in quantum theory	358
14.4.2 Neoclassical view—the measurement problem gone	209
References	363
Index	367