Contents

Pr	Preface xvi				
In	trod	uction		1	
1	Par	ticles a	and Fields: Exact Self-Consistent Description	5	
	1.1	Charge	ed Particles in the Electromagnetic Field	. 5	
		1.1.1	A general formulation of the problem	. 5	
		1.1.2	The continuity equation for electric charge	. 6	
		1.1.3	Initial equations and initial conditions	. 7	
		1.1.4	Cosmic plasma applications	. 8	
		1.1.5	Gravitational systems	. 9	
	1.2	Liouvi	lle's theorem	. 10	
		1.2.1	Continuity in phase space	. 10	
		1.2.2	The character of particle interactions	. 12	
		1.2.3	The Lorentz force, gravity	. 14	
		1.2.4	Collisional friction in plasma	. 14	
	1.3	The ex	kact distribution function	. 16	
	1.4	Practi	ce: Problems and Answers	. 17	
2	A S	tatisti	cal Description of Cosmic Plasma	21	
	2.1	The av	veraging of Liouville's equation	. 21	
		2.1.1	Averaging over phase space	. 21	
		2.1.2	Two statistical postulates	. 23	
		2.1.3	A statistical mechanism of mixing in phase space	. 24	
		2.1.4	The derivation of a general kinetic equation	. 27	
	2.2	A coll	isional integral and correlation functions	. 28	
		2.2.1	The exact distribution function	. 28	
		2.2.2	Binary correlation	. 30	

		2.2.3	The collisional integral and binary correlation	31
	2.3	Equat	ions for correlation functions	33
	2.4	Appro	eximations for binary collisions	36
		2.4.1	Small parameters of kinetic theory	36
		2.4.2	The Vlasov kinetic equation	37
		2.4.3	The Landau collisional integral	38
		2.4.4	The Fokker-Plank equation	40
	2.5	The c	orrelation function and Debye shielding	41
		2.5.1	The Maxwellian distribution function	41
		2.5.2	Pair correlations and the Debye radius	42
		2.5.3	Gravitational systems	46
	2.6	Comn	nents on numerical simulations	47
	2.7	Practi	ice: Problems and Answers	49
2	Dro	norati	ion of Appalarated Particles in Cosmic Plasma	51
J	2 1	Doriv	ation of the basic equation	51
	0.1	211	Basic approximations	51
		319	Dimensionless equation	53
	29	Λ kin	Dimensionless equation	55
	ປ. <u>4</u> ຊູຊ		lassical thick target model	57
	0.0 2 /	An ar	provimate account of scattering	60
	0.4 25	Tho r	everse current electric field effect	64
	0.0	251	The percent electric-field effect	64
		359	A formulation of a realistic kinetic problem	66
		353	Dimensionless parameters of the problem	68
		354	Coulomb opergy losses	70
		255	Basic physical regulta	70
	36	Droct	ice: Problems and Answers	74
	5.0	Flace		74
4	The	e Moti	on of a Particle in Given Fields	75
	4.1	A par	ticle in constant homogeneous fields	75
		-4.1.1	Constant non-magnetic forces	76
		4.1.2	Constant homogeneous magnetic fields	76
		4.1.3	Non-magnetic forces in a homogeneous magnetic field .	79
	4.2	Weak	ly inhomogeneous slowly changing fields	81
		4.2.1	Small parameters in the motion equation	81
		4.2.2	Expansion in powers of m/e	83
		4.2.3	The averaging over gyro-motion	85
		4.2.4	Spiral motion of the guiding center	87

		4.2.5	Inertial and gradient drifts	88
	4.3	Adiaba	atic invariants in cosmic plasmas	92
		4.3.1	General definitions	92
		4.3.2	Three main invariants	92
		4.3.3	Approximation accuracy. Exact solutions	101
	4.4	What	is magnetic reconnection?	101
		4.4.1	Neutral points of a magnetic field	101
		4.4.2	Reconnection in vacuum	103
		4.4.3	Reconnection in plasma	105
		4.4.4	Three stages in the reconnection process	107
	4.5	Accele	eration in current sheets, why?	108
		4.5.1	The origin of particle acceleration	108
		4.5.2	Acceleration in a neutral current sheet	109
	4.6	Practi	ce: Problems and Answers	113
		-		
5	Way	ve-Part	ticle Interactions in Cosmic Plasma	117
	5.1	The b	asis of kinetic theory	117
		5.1.1	The linearized Vlasov equation	117
		5.1.2	The Landau resonance and Landau damping	119
	50	5.1.3	Gyroresonance	121
	5.2	Stocha	astic acceleration of particles by waves	123
		5.2.1	The principles of particle acceleration by waves	123
		5.2.2	MHD turbulent cascading	125
		5.2.3	Stochastic acceleration of electrons	127
		5.2.4	Acceleration of protons and heavy ions	128
	r 0	5.2.5	Electron-dominated solar nares	130
	5.3	The re	elativistic electron-positron plasma	133
	5.4	Practi	Ice: Problems and Answers	134
6	Cou	ılomb	Collisions of Particles in Cosmic Plasma	137
-	6.1	Close	and distant collisions	137
		6.1.1	The Rutherford formula and collision parameters	137
		6.1.2	The test particle concept	139
		6.1.3	Particles in a magnetic trap	140
		6.1.4	The role of distant collisions	141
	6.2	Debye	e shielding and plasma oscillations	143
	6.3	$\hat{\text{Collision}}$	ional relaxations in cosmic plasma	146
		6.3.1	Some exact solutions	146
		6.3.2	Two-temperature plasma in solar flares	148

		6.3.3	An adiabatic model for two-temperature plasma			153
		6.3.4	Two-temperature accretion flows			154
	6.4	Dynaı	mic friction in cosmic plasma			155
		6.4.1	The collisional drag force and energy losses			155
		6.4.2	Electric runaway			160
		6.4.3	Thermal runaway in cosmic plasma			162
	6.5	Practi	ice: Problems and Answers	•	•	163
7	ΑE	Iydrod	lynamic Description of Cosmic Plasma			167
	7.1	Trans	ition to macroscopic transfer equations			167
		7.1.1	Distribution function moments			168
		7.1.2	Equations for moments			169
		7.1.3	General properties of the transfer equations			174
	7.2	Hydro	odynamic equations for cosmic plasma			175
		7.2.1	The continuity equation			175
		7.2.2	The momentum conservation law in cosmic plasma			176
		7.2.3	The energy conservation law			178
		7.2.4	The equation of state and transfer coefficients			178
		7.2.5	Gravitational systems			180
	7.3	The g	eneralized Ohm's law in cosmic plasma			181
		7.3.1	Basic equations			181
		7.3.2	The general solution			184
		7.3.3	The conductivity of magnetized plasma			184
		7.3.4	The physical interpretation			186
		7.3.5	Cosmic plasma conductivity			187
		7.3.6	Volume charge and quasi-neutrality			188
	7.4	Practi	ice: Problems and Answers	•	•	190
8	Ma	gnetoh	ydrodynamics of Cosmic Plasma			197
	8.1	Basic	assumptions and the MHD equations	•	•	197
		8.1.1	Old and new simplifying assumptions	•		197
		8.1.2	Non-relativistic magnetohydrodynamics			201
		8.1.3	Relativistic magnetohydrodynamics	•	•	203
	8.2	Magn	etic flux conservation. Ideal MHD			204
		8.2.1	Integral and differential forms of the law			204
		8.2.2	An approximation and the equations of ideal MHD	•		206
	8.3	The n	nain approximations in ideal MHD		•	208
		8.3.1	Dimensionless equations			208
		8.3.2	Weak magnetic fields in cosmic plasma			210

viii

		8.3.3 Strong magnetic fields in cosmic plasma	1
	8.4	Accretion discs and relativistic jets	4
		8.4.1 Angular momentum transfer in binary stars 21	4
		8.4.2 Accretion discs near black holes	6
		8.4.3 Jets near black holes	7
		8.4.4 Flares in accretion disc coronae	0
		8.4.5 Relativistic jets from disc coronae	21
	8.5	Practice: Problems and Answers	21
9	Cos	mic Plasma Flows in a Strong Magnetic Field 22	5
	9.1	The general formulation of the problem	25
	9.2	The formalism of two-dimensional problems	27
		9.2.1 The first type of problems	28
		9.2.2 The second type of problems	29
	9.3	On the existence of continuous flows	34
	9.4	Flows in the field of a time-dependent dipole	87
		9.4.1 Plane magnetic dipole fields	37
		9.4.2 Axisymmetric dipole fields in cosmic plasma 24	1
	9.5	Practice: Problems and Answers	13
10	$\mathbf{M}\mathbf{H}$	D Waves in Cosmic Plasma 24	7
10	MH 10.1	D Waves in Cosmic Plasma 24 The general dispersion equation in ideal MHD 24	7 17
10	MH 10.1 10.2	D Waves in Cosmic Plasma 24 The general dispersion equation in ideal MHD 24 Small-amplitude waves in ideal MHD 25	7 17 50
10	MH 10.1 10.2	D Waves in Cosmic Plasma 24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves25	7 17 50 50
10	MH 10.1 10.2	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves25	7 17 50 50
10	MH 10.1 10.2	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves25	7 17 50 50 51 53
10	MH 10.1 10.2	(D Waves in Cosmic Plasma 24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves2510.2.4 The phase velocity diagram25	7 17 50 50 51 53 54
10	MH 10.1 10.2	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves2510.2.4 The phase velocity diagram25Dissipative waves25	7 17 50 50 51 53 54 56
10	MH 10.1 10.2	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves2510.2.4 The phase velocity diagram25Dissipative waves2510.3.1 Damping of Alfvén waves25	7 17 50 50 51 53 54 56 56
10	MH 10.1 10.2	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves2510.2.4 The phase velocity diagram2510.3.1 Damping of Alfvén waves2510.3.2 Slightly damped MHD waves25	7 17 50 50 51 53 54 56 56 58
10	MH 10.1 10.2 10.3 10.4	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves2510.2.4 The phase velocity diagram2510.3.1 Damping of Alfvén waves2510.3.2 Slightly damped MHD waves25Practice: Problems and Answers25	7 50 50 51 53 54 56 56 58 59
10	 MHH 10.1 10.2 10.3 10.4 Disc 	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves2510.2.4 The phase velocity diagram2510.3.1 Damping of Alfvén waves2510.3.2 Slightly damped MHD waves25Practice: Problems and Answers25continuous Flows in a MHD Medium26	7 17 50 50 51 53 54 56 56 58 59 51
10	 MH 10.1 10.2 10.3 10.4 Disc 11.1 	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves2510.2.4 The phase velocity diagram2510.3.1 Damping of Alfvén waves2510.3.2 Slightly damped MHD waves25Practice: Problems and Answers25continuous Flows in a MHD Medium26Discontinuity surfaces in hydrodynamics26	7 17 50 51 53 54 56 56 58 59 51 56 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
10	MH 10.1 10.2 10.3 10.4 Disc 11.1	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves2510.2.4 The phase velocity diagram2510.3.1 Damping of Alfvén waves2510.3.2 Slightly damped MHD waves25Practice: Problems and Answers25continuous Flows in a MHD Medium26Discontinuity surfaces in hydrodynamics2611.1.1 The origin of shocks in ordinary hydrodynamics26	7 17 50 51 53 54 56 58 59 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51
10	MH 10.1 10.2 10.3 10.4 Disc 11.1	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves2510.2.4 The phase velocity diagram2510.3.1 Damping of Alfvén waves2510.3.2 Slightly damped MHD waves25Practice: Problems and Answers25continuous Flows in a MHD Medium26Discontinuity surfaces in hydrodynamics2611.1.1 The origin of shocks in ordinary hydrodynamics2611.1.2 Boundary conditions and classification26	7 17 17 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
10	MH 10.1 10.2 10.3 10.4 Disc 11.1	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves2510.2.4 The phase velocity diagram2510.3.1 Damping of Alfvén waves2510.3.2 Slightly damped MHD waves2510.3.2 Slightly damped MHD waves2511.1.1 The origin of shocks in ordinary hydrodynamics2611.1.2 Boundary conditions and classification2611.1.3 Dissipative processes and entropy26	7 17 10 11 13 14 16
10	MH 10.1 10.2 10.3 10.4 Disc 11.1	D Waves in Cosmic Plasma24The general dispersion equation in ideal MHD24Small-amplitude waves in ideal MHD2510.2.1 Entropy waves2510.2.2 Alfvén waves2510.2.3 Magnetoacoustic waves2510.2.4 The phase velocity diagram2510.3.1 Damping of Alfvén waves2510.3.2 Slightly damped MHD waves25Practice: Problems and Answers2511.1.1 The origin of shocks in ordinary hydrodynamics2611.1.2 Boundary conditions and classification2611.1.3 Dissipative processes and entropy26Magnetohydrodynamic discontinuities26	7 17 17 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

		11.2.2 Discontinuities without plasma flows across them \ldots	269
		11.2.3 Perpendicular shock wave	271
		11.2.4 Oblique shock waves	273
		11.2.5 Peculiar shock waves	279
		11.2.6 The Alfvén discontinuity	281
	11.3	Transitions between discontinuities	282
	11.4	Shock waves in collisionless plasma	284
	11.5	Practice: Problems and Answers	285
12	Evo	lutionarity of MHD Discontinuities	291
	12.1	Conditions for evolutionarity	291
		12.1.1 The physical meaning and definition	291
		12.1.2 Linearized boundary conditions	294
		12.1.3 The number of small-amplitude waves	296
		12.1.4 Domains of evolutionarity	299
	12.2	Consequences of evolutionarity conditions	300
		12.2.1 The order of wave propagation	300
		12.2.2 Continuous transitions between discontinuities	302
	12.3	Dissipative effects in evolutionarity	303
	12.4	Discontinuity structure and evolutionarity	306
		12.4.1 Perpendicular shock waves	306
		12.4.2 Discontinuities with penetrating magnetic field	311
	12.5	Practice: Problems and Answers	312
13	Par	ticle Acceleration by Shock Waves	315
	13.1	Two basic mechanisms	315
	13.2	Shock diffusive acceleration	316
		13.2.1 The canonical model of diffusive mechanism	316
		13.2.2 Some properties of diffusive mechanism	319
		13.2.3 Nonlinear effects in diffusive acceleration	320
	13.3	Shock drift acceleration	321
		13.3.1 Perpendicular shock waves	321
		13.3.2 Quasi-perpendicular shock waves	324
		13.3.3 Oblique shock waves	328
	13.4	The collapsing trap effect in solar flares	329
		13.4.1 Fast plasma outflows and shocks	329
		13.4.2 Particle acceleration in collapsing trap	331
		13.4.3 The upward motion of coronal HXR source	334
	13.5	Practice: Problems and Answers	336

14	Cos	mic Plasma Equilibrium in Magnetic Field	339
	14.1	The virial theorem in MHD $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	339
		14.1.1 A brief pre-history	339
		14.1.2 Deduction of the scalar virial theorem $\ldots \ldots \ldots$	340
		14.1.3 Some astrophysical applications	343
	14.2	Force-free fields and Shafranov's theorem	346
		14.2.1 The simplest examples of force-free configurations	346
		14.2.2 The energy of a force-free field	348
	14.3	Properties of equilibrium configurations	349
		14.3.1 Magnetic surfaces	349
		14.3.2 The specific volume of a magnetic tube	351
		14.3.3 The flute or convective instability	354
	14.4	Archimedean forces in MHD	356
		14.4.1 A general formulation of the problem	356
		14.4.2 An oversimplified consideration of the effect	358
	14.5	MHD equilibrium in the solar atmosphere	359
	14.6	Practice: Problems and Answers	360
	<i>a</i>		
15	Stat	tionary Flows in a Magnetic Field	363
	15.1	Ideal plasma flows	303
		15.1.1 Incompressible medium	304
		15.1.2 Compressible medium	305
		15.1.3 Astrophysical collimated streams (jets)	300
		15.1.4 MHD waves of arbitrary amplitude	366
	1 5 0	15.1.5 Differential rotation and isorotation	367
	15.2	Flows at small magnetic Reynolds numbers	369
		15.2.1 Stationary flows inside a duct	370
		15.2.2 The MHD generator or pump	372
	150	15.2.3 Weakly-ionized plasma in space	374
	15.3	The σ -dependent force and vortex flows \ldots	375
		15.3.1 Simplifications and problem formulation	. 375
		15.3.2 The solution for a spherical ball	. 377
		15.3.3 Forces and flows near a spherical ball	378
	15.4	Large magnetic Reynolds numbers	. 383
		15.4.1 The general formula for the σ -dependent force	. 383
		15.4.2 The σ -dependent force in solar prominences	386
	15.5	Practice: Problems and Answers	. 388

16 Magnetic Reconnection in Current Sheets	:	389
16.1 Small perturbations near a neutral line	•	389
16.1.1 Historical comments	•	389
16.1.2 Reconnection of strong magnetic fields	•	390
16.1.3 A linearized problem in ideal MHD	•	391
16.1.4 Converging waves and the cumulative effect	•	393
16.2 Large perturbations near the neutral line	•	395
16.2.1 Magnetic field line deformations	•	395
16.2.2 Plasma density variations		398
16.3 The dynamic dissipation of a magnetic field		400
16.3.1 Conditions of appearance		400
16.3.2 The physical meaning of dynamic dissipation \ldots		402
16.4 Nonstationary analytical models of the RCS \ldots \ldots \ldots		403
16.4.1 Self-similar 2D MHD solutions		403
16.4.2 Magnetic collapse at the zeroth point		406
16.4.3 From collisional to collisionless reconnection		410
16.5 Reconnection in solar flares		411
16.5.1 The role of magnetic fields \ldots \ldots \ldots \ldots		411
16.5.2 Three-dimensional reconnection in flares \ldots \ldots		414
16.5.3 The solar flare of 1980 November 5 \ldots .		418
16.5.4 A current sheet as the source of energy		422
16.5.5 A current sheet as a part of an electric circuit \ldots		425
16.5.6 New topological models	•••	427
17 Stationary Models of Reconnecting Current Sheets		433
17.1 Magnetically neutral current sheets		433
17.1.1 The simplest MHD model		433
17.1.2 The current sheet by Syrovatskii		435
17.1.3 Simple scaling laws		438
17.2 Magnetically non-neutral RCS's		440
17.2.1 Transversal magnetic fields		440
17.2.2 Longitudinal magnetic fields		441
17.3 Basic physics of the HTTCS		443
17.3.1 A general formulation of the problem		443
17.3.2 Problem in the strong field approximation		446
17.3.3 Basic local parameters of the HTTCS		447
17.3.4 The general solution of the problem		448
17.3.5 Plasma turbulence inside the HTTCS		450
17.3.6~ Formulae for the basic parameters of the HTTCS $~$.		450

	17.4	HTTC	S in solar flares		453
		17.4.1	Why are flares so different?		453
		17.4.2	Superhot plasma production		456
		17.4.3	Concluding comments		458
	17.5	Practic	ce: Problems and Answers		459
18	Part	icle A	cceleration in Current Sheets		463
	18.1	Magne	tically non-neutral RCS's		463
		18.1.1	An introduction in the problem	•	463
		18.1.2	Dimensionless parameters and equations		464
		18.1.3	An iterative solution of the problem		466
		18.1.4	The maximum energy of an accelerated particle		469
		18.1.5	The non-adiabatic thickness of current sheet		470
	18.2	Regula	r versus chaotic acceleration		471
		18.2.1	Reasons for chaos		472
		18.2.2	The stabilizing effect of the longitudinal field		473
		18.2.3	Characteristic times of processes		475
		18.2.4	Dynamics of accelerated electrons in solar flares		476
		18.2.5	Particle simulations of collisionless reconnection		477
	18.3	Ion acc	celeration in current sheets		477
		18.3.1	Ions are much heavier than electrons		477
		18.3.2	Electrically non-neutral current sheets		479
		18.3.3	Maximum particle energy and acceleration rates		481
		18.3.4	Early and late acceleration in solar flares	•	484
19	Stru	ictural	Instability of Reconnecting Current Sheets		487
	19.1	Proper	ties of reconnecting current sheets		487
		19.1.1	Current sheet splitting		487
		19.1.2	Evolutionarity of reconnecting current sheets		489
		19.1.3	Magnetic field near the current sheet		490
		19.1.4	Current sheet flows		491
		19.1.5	Additional simplifying assumptions		493
	19.2	Small	perturbations outside the RCS		494
		19.2.1	Basic assumptions		494
		19.2.2	The propagation of perturbations normal to the RCS		494
		19.2.3	The inclined propagation of small perturbations		496
	19.3	Pertur	bations inside the RCS		500
		19.3.1	Linearized dissipative MHD equations		500
		19.3.2	Boundary conditions		502

		19.3.3	Dimensionless equations and small parameters 50	13
		19.3.4	Solution of the linearized equations	15
	19.4	Solutio	on on the boundary of the RCS)8
	19.5	The cr	iterion of evolutionarity $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 51$.0
		19.5.1	One-dimensional boundary conditions 51	.0
		19.5.2	Solutions of the boundary equations	.1
		19.5.3	Evolutionarity and splitting of current sheets 51	.5
20	The	Tearin	ng Instability of a Reconnecting Current Sheet 51	7
	20.1	The or	igin of the tearing instability 51	.7
		20.1.1	Two necessary conditions	.7
		20.1.2	Historical comments	.8
	20.2	The size	mplest problem and its analytic solution $\ldots \ldots \ldots \ldots 52$	20
		20.2.1	The model and equations for small disturbances 52	20
		20.2.2	The external non-dissipative region	22
		20.2.3	The internal dissipative region	23
		20.2.4	Matching of the solutions and the dispersion relation . 52	25
	20.3	The pl	nysical interpretation of the instability	27
	20.4	The st	abilizing effect of the transversal field	30
	20.5	Compr	essibility and a longitudinal field $\ldots \ldots \ldots \ldots \ldots \ldots 53$	33
		20.5.1	Neutral current sheets	33
		20.5.2	Non-neutral current sheets	34
	20.6	The ki	netic approach \ldots \ldots \ldots \ldots \ldots \ldots \ldots 53	36
		20.6.1	The tearing instability of neutral sheet	36
		20.6.2	Stabilization by the transversal field 54	ł0
		20.6.3	The tearing instability of the geomagnetic tail 54	1
21	Sele	cted T	rends in Cosmic Plasma Physics 54	5
	21.1	Recon	nection and magnetic helicity	15
		21.1.1	General properties of complex MHD systems 54	15
		21.1.2	Helical scaling in turbulence	17
		21.1.3	Coronal heating in solar active regions	18
		21.1.4	Reconnection and helicity in solar flares 54	19
	21.2	Recon	nection in weakly-ionized plasma	50
		21.2.1	Some observations and classical models	50
		21.2.2	Balance equations and their solution	51
		21.2.3	Characteristics of the reconnecting current sheet 55	53
		21.2.4	Reconnection under solar prominences	56
		21.2.5	Element fractionation by reconnection 55	58

21.3	The photospheric dynamo	560
21.0	21.3.1 Current generation mechanisms	560
	21.3.2 Physics of thin magnetic flux tubes	560
	21.3.3 FIP fractionation theory	563
21.4	Mechanisms of coronal heating	565
21.1	21.4.1 Heating of the quiet solar corona	565
	21.4.2 Coronal heating in active regions	566
21.5	Practice: Problems and Answers	568
22 Mag	gnetic Reconnection of Electric Currents	571
22.1	Introductory comments	571
22.2	Flare energy storage and release	572
	22.2.1 From early models to future investigations	572
	22.2.2 Some alternative trends in the flare theory	576
	22.2.3 Current sheets at separatrices	577
22.3	Current sheet formation mechanisms $\ldots \ldots \ldots \ldots \ldots$	578
	22.3.1 Magnetic footpoints and their displacements	578
	22.3.2 Classical 2D reconnection	580
	22.3.3 The creation of current sheets by shearing motions \ldots	582
	22.3.4 Antisymmetrical shearing motions	584
	22.3.5 The third class of displacements	586
22.4	The shear and reconnection of currents	586
	$22.4.1\;$ Physical processes related to shear and reconnection $\;$.	586
	22.4.2 The topological interruption of electric currents	589
	22.4.3 The inductive change of energy	590
	22.4.4 To the future observations by $Solar-B$	591
Epilog	ue	593
Appen	dix 1. Notation	595
Appen	dix 2. Useful Expressions	601
Appen	dix 3. Constants	605
Bibliog	graphy	607
Index	• ··· •	639