Contents

Contributors	ix
PREFACE	xi

A Unified Theory for Modeling Water Waves

Theodore Yaotsu Wu

I. Introduction	2
II. Fully Nonlinear Fully Dispersive (FNFD) Waves in Water	
of Variable Depth	7
III. Boundary Integral Closure	20
IV. Modeling FNFD Waves in Water of Uniform Depth	23
V. Weakly Nonlinear Fully Dispersive (WNFD) Water Wave Theory	26
VI. Weakly Nonlinear Weakly Dispersive (WNWD) Water Wave Models	30
VII. Fully Nonlinear Weakly Dispersive (FNWD) Water Wave Models	36
VIII. Higher-Order WNWD Long-Wave Models	40
IX. Nonlinear Wave–Wave Interactions	47
X. Soliton Generation by Resonant Forcing	62
XI. Channel Shape Effects on Wave Propagation and Generation	78
XII. Conclusion	80
Acknowledgments	82
References	82

Coastal Hydrodynamics of Ocean Waves on Beach

Jin E. Zhang, Theodore Y. Wu, and Thomas Y. Hou

I	. Introduction	90
II	. Linear Nondispersive Theory of Oblique Wave Run-Up on	
	Uniform Beach	95
III	. Lagrangian-Eulerian Hybrid Numerical Method for Run-up	
	Computation	118
IV	. Nonlinear Effects on Run-Up of Solitary Waves on Parabolic	
	Beaches	127
V	. Dispersive Effects on Run-Up of Waves on Beach	134
VI	. Wave-Induced Longshore Current	153
VII	. Conclusion	157

Contents

Appendix A. More Comparisons between the Present Results and	
other Theories	159
Acknowledgments	163
References	164

Onset of Oscillatory Interfacial Instability and Wave Motions in Bénard Layers

Manuel G. Velarde, Alexander A. Nepomnyashchy, and Marcel Hennenberg

I.	Introduction	168
II.	Summary of Results and Limitations of the Classical Theories	171
III.	The Boussinesq Approximation and Surface Deformation	179
IV.	Appropriate Generalizations of the Classical Theories	183
V.	Some Recent Results on Patterned Convection	202
VI.	Further Discussion of Oscillatory Motions: Surface and Internal	
	Waves, and Boundary-Layer Effects	205
VII.	Nonlinear Waves and Dissipative Solitons	212
VIII.	Concluding Remarks	227
	Acknowledgments	227
	References	227

Role of Cryogenic Helium in Classical Fluid Dynamics: Basic Research and Model Testing

Katepalli R. Sreenivasan and Russell J. Donnelly

I.	Introduction	240
II.	Brief Note on Helium	243
III.	Some Examples of Flows at Very High Rayleigh and Reynolds	
	Numbers	245
IV.	Need for Studies at Conditions Approaching Ultra-High Parameter	
	Values	247
V.	Some Considerations about Large-Scale Helium Flows	255
VI.	Superfluid Helium and the Hypothesis of Vortex-Coupled	
	Superfluidity	260
VII.	Summary of Instrumentation Development for Helium	
	Turbulence	265
VIII.	Limitations of Helium as a Hydrodynamic Test Fluid	270
IX.	Concluding Remarks	271
	Acknowledgments	272
	References	272

vi

Contents

Recent Advances in Applications of Tensor Functions in Continuum Mechanics

Josef Betten

I.	Introduction	278
II.	Nonlinear Constitutive Equations for Anisotropic Materials	280
III.	Determination of Scalar Coefficients in Constitutive and Evolutional	
	Equations	296
IV.	Tensorial Generalization of Uniaxial Relations to Multiaxial States	
	of Stress	299
V.	Material Tensors of Rank Four	309
VI.	Damage Tensors and Tensors of Continuity	331
VII.	Stresses in a Damaged Continuum	340
VIII.	Comparison with Own Experiments	346
	References	359
	Author Index	365
	Subject Index	373