

CONTENTS

The Decoupling of Electronic and Nuclear Motions in the Isolated Molecule Schrödinger Hamiltonian By Brian Sutcliffe	1
Association, Dissociation, and the Acceleration and Suppression of Reactions by Laser Pulses By Moshe Shapiro	123
Vibrational Energy Flow: A State Space Approach By M. Gruebele	193
DISCRETE-VARIABLE REPRESENTATIONS AND THEIR UTILIZATION By John C. Light and Tucker Carrington, Jr.	263
Above and Below the Wannier Threshold By Arlene M. Loughan	311
Unified Theory of Photochemical Charge Separation By A. I. Burshtein	419
AUTHOR INDEX	589
Subject Index	603

THE DECOUPLING OF ELECTRONIC AND NUCLEAR MOTIONS IN THE ISOLATED MOLECULE SCHRÖDINGER HAMILTONIAN

BRIAN SUTCLIFFE

Department of Chemistry, University of York, York, England and Laboratoire de Chimie Physique Moléculaire, Université Libre de Bruxelles, Belgium*

CONTENTS

- I. Intrdouction
- II. Removing translational motion
 - A. The translationally invariant Hamiltonian
 - B. The translationally invariant angular momentum operator
 - C. The translationally invariant dipole operator
 - D. Example: translationally invariant coordinates
 - E. The bound states of the translationally invariant problem
 - F. Distinguishing electronic and nuclear motions
 - 1. Example: translationally invariant coordinates identifying electrons and nuclie
 - G. The Hamiltonian operator with electrons identified
 - H. The angular momentum operator with electrons identified
 - I. The dipole operator with electrons identified
 - J. Permutationally restricted translationally invariant coordinates
 - 1. Example: permutationally restricted translationally invariant coordinates for NH₃ with electrons and nuclei identified
 - K. The permutationally restricted translationally invariant Hamiltonian identifying electrons
 - L. The permutationally restricted translationally invariant angular momentum operator identifying electrons
 - M. The permutationally restricted translationally invariant dipole operator identifying electrons
 - N. Example: Permutationally restricted translationally invariant operators for NH₃

^{*}Present address.

- 1. A kinetic-energy operator for NH₃
- 2. Some dipole moment operators for NH₃
- O. Symmetry in the translationally invariant permutationally restricted space III. Fixing a frame in the body
 - A. The permutationally restricted angular momentum operator in a frame fixed in the body
 - B. The permutationally restricted Hamiltonian in a frame fixed in the body
 - C. The permutationally restricted dipole operator in a frame fixed in the body
 - D. The Jacobian for transformation to a frame fixed in the body
 - E. Example: NH₃ in a frame fixed in the body with electrons and nuclei identified
 - 1. The kinetic-energy operator in a frame fixed in the body for NH₃
 - 2. The potential-energy operator in a frame fixed in the body for NH₃
 - 3. The dipole moment expression in a frame fixed in the body for NH₃
 - F. Alternative forms of the kinetic-energy operator expressed in the frame fixed in the body
 - G. Internal and orientational coordinates expressed directly in terms of the original coordinates
 - 1. Example: the Eckart choice of a frame fixed in the body
- IV. Symmetry properties realised in a frame fixed in the body
 - A. Rotation-reflection symmetry
 - B. Rotation reflections defined in the frame fixed in the body
 - 1. Example: rotation reflections in a frame fixed in the body
 - C. Permutational symmetry
 - 1. Example: the effects of nuclear permutations on the internal and orientational coordinates in NH₃
 - 2. Example: the effects of nuclear permutations on the Eckart coordinates
 - V. Removing rotational motion in the frame fixed in the body
 - A. The internal motion effective Hamiltonain operator in permutationally restricted coordinates
 - B. The internal motion effective dipole moment operator in permutationally restricted coordinates
 - C. Example: removing the rotational motion from the NH₃ operators
- VI. Constructing effective operators for nuclear motion in a product function basis
 - A. The effective angular momentum operator for nuclear motion
 - B. The effective Hamiltonian for nuclear motion
 - C. The effective dipole moment for nuclear motion
 - D. The domain of the effective nuclear motion operators
 - 1. Example: the electronic Hamiltonian for NH₃
- VII. The clamped nuclei operators
 - A. The clamped nuclei Hamiltonian
 - 1. Example: The clamped nuclei operator for NH₃
 - B. The clamped nuclei electric dipole

- C. The clamped nuclei form of the angular momentum operators
- D. The molecule as described by molecular spectroscopy

VIII. The current position

- A. Coordinate problems
 - 1. How coordinate problems might be avoided
- B. Domain problems
 - 1. How domain problems might be avoided
- IX. Conclusions

ASSOCIATION, DISSOCIATION, AND THE ACCELERATION AND SUPPRESSION OF REACTIONS BY LASER PULSES

MOSHE SHAPIRO

Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel

CONTENTS

- I. Introduction
- II. One-Photon Dissociation of a Single-Precursor State by a Strong Laser Pulse
 - A. Theory
 - B. Computational Examples
- III. Adiabaticity in Two-Photon Dissociation
 - A. Theory of Resonantly Enhanced Two-Photon Dissociation
 - B. The Adiabatic Approximation for a Final Continuum Manifold
 - C. Going Beyond the Adiabatic Approximation
 - D. Computational Examples
- IV. Resonantly Enhanced Two-Photon Association
 - A. Theory of Photoassociation of a Coherent Wavepacket
 - B. Photoassociation of a Coherent Na + Na Wavepacket
- V. Laser Catalysis
 - A. Coupling of Two Continua to a Bound State by a Laser Pulse
 - B. Pulsed Laser Catalysis with a Pair of Eckart Potentials
- VI. Conclusions
- Appendix A. The Uniform and WKB Approximations for Dissociation by a Strong Pulse
- Appendix B. The Adiabatic Approximation in the Presence of a Continuum

VIBRATIONAL ENERGY FLOW: A STATE SPACE APPROACH

M. GRUEBELE

Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois

CONTENTS

- I. Introduction
- II. The experimental tapestry
- III. Scaling of the Hamiltonian
 - A. Hamiltonian and coordinate systems
 - B. Locality of bonding and scaling of potential constants
 - C. Correlations in the Hamiltonian
 - D. Matrix element phases and coupling chains
 - E. Overall and internal rotation
 - F. Examples and summary
- IV. State space
 - A. State-space representations
 - B. Optimal representation and hierarchical analysis
 - C. Near-optimal representations
 - D. Interior and edge states
 - E. Effective Hamiltonian
 - F. Dimension of IVR flow manifold and local measures
 - G. Connection of state space to tiers and chemical reactions
 - H. (Semi)classical connection
- V. Scaling of the dynamics
 - A. Energy threshold
 - B. Initial decay
 - C. Dilution factors
 - D. Level statistics
 - E. Interior and edge states
 - F. Quantum diffusion on the IVR manifold
- VI. Future directions
 - A. Control of molecular reactivity
 - B. Other areas

Acknowledgments Glossary References

DISCRETE-VARIABLE REPRESENTATIONS AND THEIR UTILIZATION

JOHN C. LIGHT

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois

TUCKER CARRINGTON JR.

Département de chimie, Université de Montréal, Montreal, Canada

CONTENTS

- I. Introduction and history
 - A. Scope
 - B. Historical context
- II. "Pointwise" representations in one dimension
 - A. Introduction to types of discrete-variable representations (DVRs)
 - B. Orthogonal polynomial bases and Gaussian quadrature DVRs
 - C. Product approximation and potential optimized DVRs (PODVRs)
 - D. Hamiltonian evaluation
 - E. Other DVRs
 - 1. Lobatto DVR
 - 2. Sinc DVR
 - F. Generalized DVRs?
- III. Multidimensional DVRs and applications
 - A. Introduction
 - B. Orthogonal coordinates
 - C. Complicated kinetic energy operators
 - D. Symmetry-adapted DVRs
 - E. Sequential diagonalization-truncation or adiabatic reduction
 - F. Iterative methods
 - 1. Efficient matrix-vector products
 - 2. Efficient fixed basis representation (FBR) matrix-vector products

- 3. Efficient matrix-vector products for nondirect product and nonproduct representations
- 4. Nondirect product representations
- 5. Using Lanczos with sequential diagonalization-truncation

IV. Caveats

- A. Boundary conditions and ranges and symmetries
- B. Quadrature error and variational error
- C. Truncation of primitive DVRs
- V. Summary and conclusions

Acknowledgments

ABOVE AND BELOW THE WANNIER THRESHOLD

ARLENE M. LOUGHAN

Department of Applied Mathematics and Theoretical Physics, The Queen's University of Belfast, Belfast, Northern Ireland

CONTENTS

- I. Wannier threshold ionization
 - A. Introduction
 - B. Wannier theory
 - 1. The coordinate system
 - 2. The classical Wannier arguments
 - C. Experimental evidence
- II. Theory
 - A. The semiclassical method
 - 1. Peterkop's JWKB method
 - 2. Crothers' uniform semiclassical approximation
 - B. Potential ridge resonances
 - 1. Fano's theory
- III. Doubly excited states
 - A. Introduction
 - B. Wannier Below-threshold L=0 doubly excited He⁻ states
 - 1. Theory
 - 2. Experimental work and classification schemes
 - 3. Results and discussion
 - C. Analytic continuation to below-threshold L=1 and L=2 states of He⁻
 - 1. Introduction
 - 2. Theory
 - 3. Results and discussion
 - D. Doubly excited states of He
 - 1. Introduction
 - 2. Theoretical amendments
 - 3. Results and discussion
- IV. Near-threshold ionization
 - A. Introduction
 - B. Theory

Advances in Chemical Physics, Volume 114, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-39267-7 © 2000 John Wiley & Sons, Inc.

C. Results and discussion

V. Conclusions

UNIFIED THEORY OF PHOTOCHEMICAL CHARGE SEPARATION

A. I. BURSHTEIN

The Weizmann Institute of Science, Rehovot, Israel

CONTENTS

- I. Introduction
- II. Position-dependent transfer rates
 - A. Single-channel transfer assisted only by classical modes
 - B. Multichannel electron transfer
 - C. Model rates
- III. Free-energy-gap (FEG) law
 - A. Multichannel intramolecular transfer
 - B. FEG law for ionization and subsequent recombination to the ground state
 - C. FEG law for kinetically controlled binary ionization
 - D. FEG law for geminate recombination to the ground state
- IV. Differential encounter theory for binary ionization
 - A. Contact approximation
 - B. Differential encounter theory
 - C. Distribution of charged products
 - D. Quantum yield of ionization and fluorescence
 - E. FEG law for bimolecular ionization
 - V. Contact and remote geminate recombination
 - A. Contact approximation
 - B. Charge separation guantum yield in contact approximation
 - C. Kinetics of contact geminate recombination
 - D. Remote geminate recombination
 - E. Rectangular model of recombination layer
 - F. Smooth recombination layer and real initial distributions
- VI. Photoionization followed by geminate recombination
 - A. Ion accumulation without recombination
 - B. Photogeneration of ions followed by their recombination
 - C. Kinetics of charge accumulation and recombination
 - D. FEG law for geminate recombination
- VII. Separation of singlet-born RIPs
 - A. Extended exponential model

- B. Photogeneration of free ions and radicals
- C. Ion accumulation followed by recombination to the ground state
- D. Recombination via ion pair undergoing singlet-triplet conversion

VIII. Separation of triplet ion pair

- A. Spin conversion rate
- B. Triplet ionization followed by stochastic spin conversion
- C. Contact recombination
- D. Spin control in highly polar solutions
- E. Distant starts
- F. The closest starts
- G. Dynamic spin conversion in a two-level system
- H. Unified theory versus exponential model

IX. Photogeneration of the exciplexes

- A. Basic equations of the unified theory
- B. Specifying the reaction scheme: Scheme I
- C. Contact recombination
- D. Polar solvents
- E. Specifying the reaction scheme: Scheme II
- F. Magnetic field effects in Scheme II
- X. Conclusions

Acknowledgment

	**	