

Molecular Engineering for Ferroelectricity in Liquid Crystals	1
By Daniel Guillon	
LARGE ELECTROCLINIC EFFECT AND ASSOCIATED PROPERTIES OF CHIRAL SMECTIC A LIQUID CRYSTALS	51
By R. Shashidhar, J. Naciri, and B. R. Ratna	
Pyroelectric Studies of Polar and Ferroelectric Mesophases	77
By L. M. Blinov	
Ferroelectric LC-Elastomers	159
By Rudolph Zentel, Elisabeth Gebhard, and Martin Brehmer	
STRUCTURE, MOBILITY, AND PIEZOELECTRICITY IN FERROELECTRIC LIQUID CRYSTALLINE ELASTOMERS	183
By F. Kremer, H. Skupin, W. Lehmann, L. Hartmann, P. Stein, and H. Finkelmann	
Orientational Effects in Ferroelectric and Antiferroelectric Liquid Crystals Using Infared Spectroscopy	203
By A. Kocot, J. K. Vij, and T. S. Perova	
THE STRUCTURE AND PROPERTIES OF ANTIFERROELECTRIC LIQUID CRYSTALS	271
By Yu. P. Panarin and J. K. Vij	
Order Parameter Variation in Smectic Liquid Crystals	317
By Steve J. Elston and Nigel J. Mottram	38
	. 2

STRUCTURE AND ORIENTATION OF MOLECULES IN DISCOTIC LIQUID CRYSTALS USING INFRARED SPECTROSCOPY	341
By T. S. Perova, J. K. Vij, and A. Kocot	
ROTATIONAL DIFFUSION AND DIELECTRIC RELAXATION IN NEMATIC LIQUID CRYSTALS	487
By William T. Coffey and Yuri P. Kalmykov	
AUTHOR INDEX	553
Subject Index	571

MOLECULAR ENGINEERING FOR FERROELECTRICITY IN LIQUID CRYSTALS

DANIEL GUILLON

Institut de Physique et Chimie des Matériaux de Strasbourg, Groupe des Matériaux Organiques, Strasbourg Cedex, France

CONTENTS

- I. Introduction
- II. Conceptual and Theoretical Aspects
 - A. Ferroelectricity in Tilted Smectic Phases
 - B. The Boulder Model
 - C. Molecular Statistical Theory of Ferroelectric Ordering
 - D. Indigenous Polarization Theory
 - E. Ferroelectricity from Achiral Calamitic Molecules
 - F. Induced Ferroelectricity from Achiral Banana-Shaped Molecules
- III. Molecular Design for Smectic C* Phases
 - A. Role of the Dipole Moment Strength
 - B. Location of the Chiral Center
 - C. Molecular Modeling
 - D. Role of the Enantiomeric Excess
 - E. Role of the Terminal Aliphatic Chains
 - F. Fluorination of Smectogenic Molecules
 - G. Influence of Siloxane Groups
 - H. Other Forms of Chirality
- IV. Molecular Designs for Other Polar Phases
 - A. Polyphilic Derivatives
 - B. Perfluorinated Swallow-Tailed Compounds
 - C. Achiral Banana-Shaped Molecules
- V. Ferroelectricity in Columnar Mesophases
 - A. Chiral Columnar Mesophases
 - B. Columnar Mesophases with Axial Polarity
- VI. Antiferroelectricity in Liquid Crystals
- VII. Conclusion

Acknowledgments

References

Advances in Liquid Crystals: A Special Volume of Advances in Chemical Physics, Volume 113, edited by Jagdish K. Vij. Series Editors I. Prigogine and Stuart A. Rice. ISBN 0-471-18083-1. © 2000 John Wiley & Sons, Inc.

LARGE ELECTROCLINIC EFFECT AND ASSOCIATED PROPERTIES OF CHIRAL SMECTIC A LIQUID CRYSTALS

R. SHASHIDHAR, J. NACIRI, AND B. R. RATNA

Naval Research Laboratory, Washington, D.C., U.S.A.

CONTENTS

- I. Introduction
- II. Development of Materials with Large Electroclinic Coefficients (ECE)
- III. Layer Buckling and Associated Effects
 - A. X-Ray Studies of the Striped Texture
 - B. Optical Studies on Striped Domain Textures
 - C. Dynamic Light-Scattering Study of Stripes
- IV. Other Symmetry-Breaking Effects
 - A. Dielectric Biaxiality
 - B. Optical Biaxiality
 - C. Second Harmonic Generation in the Smectic A phase
 - V. Application of Electroclinic Liquid Crystals

PYROELECTRIC STUDIES OF POLAR AND FERROELECTRIC MESOPHASES

L. M. BLINOV

Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia

- I. Introduction
- II. Polarization and Pyroelectric Effect: Basic Concepts
 - A. Cells and Equivalent Electric Circuits
 - B. Time Dependencies
 - 1. Pyroelectric Response to Light Intensity Step
 - 2. Response to a Light Pulse
 - 3. Response to Harmonically Modulated Light
- III. Pyroelectric Techniques
 - A. Pulse Technique
 - 1. Dynamic Regime
 - 2. A Quasi-static Regime
 - B. Steady-State Technique
- IV. "Pyroeffects" in Nonpolar Substances
 - A. Apparent Pyroeffect at the Nonpolar Dielectric-Metal Interface
 - B. Flexoelectric Polarization in Nematics
 - 1. Measurements of Flexoelectric Polarization and Flexoelectric Coefficients
 - 2. Measurements of the Anchoring Energy
 - V. Chiral Ferroelectrics and Antiferroelectrics
 - A. Spontaneous Polarization in the Smectic C* Phase
 - 1. Quasi-static Measurements of P_S on Classical Materials
 - 2. Polymer FLCs
 - 3. FLC with Temperature Inversion of Polarization Sign
 - 4. Study of Spatially Inhomogeneous Structures
 - B. Soft-Mode Susceptibility and Landau Coefficients at the Ferroelectric Phase Transition
 - 1. General Consideration
 - 2. Soft-Mode Susceptibility of DOBAMBC

Advances in Liquid Crystals: A Special Volume of Advances in Chemical Physics, Volume 113, edited by Jagdish K. Vij. Series Editors I. Prigogine and Stuart A. Rice. ISBN 0-471-18083-1. © 2000 John Wiley & Sons, Inc.

- 3. Landau Coefficients for a Multicomponent Mixture with High P_s
- 4. Landau Coefficients for an FLC with Polarization Sign Reversal
- 5. Field-Induced Polarization in a Nematic at the N-SmC* Transition
- C. Dynamics of Polarization
 - 1. Soft Mode
 - 2. Fast Mode
- D. Pyroelectricity in Chiral Antiferroelectrics
- VI. Achiral Ferro- and Antiferroelecric Liquid Crystals
 - A. Polyphilic Compounds
 - B. Pyroelectric Properties of 40CB
 - C. Antiferroelectric Polymer-Monomer Mixtures
 - 1. Materials and Measurements
 - 2. Pyroelectric Data for PM6R8-M6R8 Mixtures
 - 3. Structure

VII. Conclusions

Acknowledgments

FERROELECTRIC LC-ELASTOMERS

RUDOLF ZENTEL, ELISABETH GEBHARD, AND MARTIN BREHMER

Department of Chemistry and Institute of Materials Science, University of Wuppertal, Wuppertal, Germany

CONTENTS

- I. Introduction
- II. Synthesis of Ferroelectric LC-Elastomers
- III. Ferroelectric Characterization (Uncross-Linked Systems)
- IV. Properties of Ferroelectric LC-Elastomers
 - A. Elastomer Properties
 - B. Ferroelectric Properties
- V. Imaging of Ferroelectric LC-Elastomers
- VI. Piezoelectric Properties
- VII. Conclusion

Acknowledgments

References

Additional Reading

STRUCTURE, MOBILITY, AND PIEZOELECTRICITY IN FERROELECTRIC LIQUID CRYSTALLINE ELASTOMERS

F. KREMER, H. SKUPIN, W. LEHMANN, AND L. HARTMANN

Fakultät für Physik und Geowissenschaften, Universität Leipzig, Leipzig, Germany

P. STEIN AND H. FINKELMANN

Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany

CONTENTS

- I. Introduction
- II. Experimental
 - A. Measurements of the (Direct and Inverse) Electromechanical Effect in FLCE
 - B. Time-Resolved FTIR-Spectroscopy
- III. Results and Discussion
 - A. The Direct and Inverse Piezoelectric Effect in FLCE
 - B. Structure and Mobility of FLCE as Studied by (Time-Resolved) FTIR-Spectroscopy
 - C. Molecular Interpretation of the Observed Piezoelectric Effect in the FLCE Under Study
- IV. Conclusion

Acknowledgment

₩)

ORIENTATIONAL EFFECTS IN FERROELECTRIC AND ANTIFERROELECTRIC LIQUID CRYSTALS USING INFRARED SPECTROSCOPY

A. KOCOT

Institute of Physics, University of Silesia, Katowice, Poland

J. K. VIJ AND T. S. PEROVA

Department of Electronic and Electrical Engineering, Trinity College,
University of Dublin, Ireland

CONTENTS

- I. Introduction
- II. Orientational Order Parameters and Their Determination by Vibrational Spectroscopy
 - A. IR Dichroism
 - B. Uniaxial Phase
- III. Molecular Order in the SmC* Phase
- IV. Effect of the Electric Field in the SmC* Phase: Determination of the Molecular Tilt Angle
- V. Molecular Conformation and Hindered Rotation in the Ferroelectric and Antiferroelectric Phases
 - A. Homogeneously Aligned Cells
 - 1. SmA* Phase
 - 2. Helicoidal SmC* and Unwound, Uniform SmC* Phases
 - B. Homeotropically Aligned Cells
 - C. Homeotropically Oriented Free-Standing Film
 - D. Rotation of Carbonyl Groups in SmA*, SmC*, and SmC* Phases
- VI. Biased Rotation Around the Long Axis—Calculation of IR Absorbance Components
- VII. Dynamics of the Electric Field-Induced Molecular Reorientation of the FLCs
 - A. Dynamics of the Molecular Reorientation in a Chiral SmA* Phase
 - B. Reorientation Dynamics of FLC in the SmC^{*} and SmC^{*} Phases

Advances in Liquid Crystals: A Special Volume of Advances in Chemical Physics, Volume 113, edited by Jagdish K. Vij. Series Editors I. Prigogine and Stuart A. Rice. ISBN 0-471-18083-1. © 2000 John Wiley & Sons, Inc.

- 1. Synchronous Reorientation in TFMHPODB
- 2. Delayed Response of the Alkyl Chain During the Dynamical Switching in VOH8 and MHDBOB
- C. Double-Modulation FTIR Spectroscopy of an FLC Sample Under an Alternating Electric Field
- VIII. Segmental Orientation and the Mobility of Ferroelectric LC Dimers and Polymers
 - A. FLCP
 - B. Segmental Mobility of FLCP in the SmC* Phase

Acknowledgments

et

THE STRUCTURE AND PROPERTIES OF ANTIFERROELECTRIC LIQUID CRYSTALS

YU. P. PANARIN AND J. K. VIJ

Department of Electronic and Electrical Engineering, Trinity College, University of Dublin, Ireland

CONTENTS

- I. Introduction
- II. Discovery of Antiferroelectric Liquid Crystals
- III. The Structure of Antiferroelectric Liquid Crystals and Theoretical Models
- IV. The Methods for the Phase Identification of AFLC's
- V. The Dynamic and Static Properties of SmC_A*
 - A. Origin of Process 0
 - B. Origin of Process 1
- VI. Structure and Properties of Ferrielectric Phases
- VII. On the Stability of Ferrielectric Phases
- VIII. The Successive Phase Transitions in Chiral Tilted Smectics
 - IX. A Recent Examination of the Structure of Ferrielectric Phases
 - X. Conclusion

Acknowledgments

ORDER PARAMETER VARIATION IN SMECTIC LIQUID CRYSTALS

STEVE J. ELSTON AND NIGEL J. MOTTRAM*

Department of Engineering Science, University of Oxford Parks Road, Oxford, United Kingdom

CONTENTS

- I. Introduction
- II. SmA
- III. SmC
- IV. SmC Layer Structure
- V. Conclusion

STRUCTURE AND ORIENTATION OF MOLECULES IN DISCOTIC LIQUID CRYSTALS USING INFRARED SPECTROSCOPY

T. S. PEROVA AND J. K. VIJ

Department of Electronic and Electrical Engineering, Trinity College, University of Dublin, Ireland

A. KOCOT

Institute of Physics, University of Silesia, Katowice, Poland

- I. Introduction
 - A. Discotics and Their Potential for Applications
 - B. Mesophases in Discotics
 - C. Scope of the Chapter
- II. Theoretical Background
 - A. Order Parameter
 - B. Intensity Distribution Functions
- III. Experimental
 - A. Chemicals
 - B. Alignment of Discotic Liquid Crystals
 - 1. Homeotropic (Side-On) Alignment
 - 2. Planar (Edge-On) Alignment
 - C. Sample Preparation
 - D. IR Spectroscopy
 - 1. Conventional IR Measurements
 - 2. Polarized Oblique IR Transmission Measurements
 - 2.1. Planar Alignment
 - 2.2. Homeotropic Alignment
 - 3. Anisotropic Sample/KBr Mull Comparison Method
 - E. Investigations of Surface Structure

Advances in Liquid Crystals: A Special Volume of Advances in Chemical Physics, Volume 113, edited by Jadish K. Vij. Series Editors I. Prigogine and Stuart A. Rice. ISBN 0-471-18083-1. © 2000 John Wiley & Sons, Inc.

- IV. Results of FTIR Investigations and Discussion
 - A. Simple Discotics (Benzenhexa-n-Alkanoates)
 - 1. Alkyl Chain Vibrations
 - 2. Core Vibrations
 - 3. Analysis of the Molecular Orientation on the External Surfaces
 - B. Triphenylene Derivatives
 - 1. H3T, H5T, H7T and H10OT
 - 1.1. Results and Discussion
 - 1.2. Frequency Changes
 - 2. The Influence of the Substrate's Structure on the Alignment of DLC
 - 2.1. Uncoated Substrates
 - 2.2. Nylon Spin-Coated Substrates
 - 3. **H6TT**
 - 4. H7T-NO₂
 - C. Truxene Derivatives
 - 1. HA14TX
 - 2. HAIOTX
 - 3. HBTX
 - D. Discotic Polymer
 - E. Switchable DLC
- V. Summary

Acknowledgements

References

Appendix A

ROTATIONAL DIFFUSION AND DIELECTRIC RELAXATION IN NEMATIC LIQUID CRYSTALS

WILLIAM T. COFFEY

Department of Electronic and Electrical Engineering, Trinity College,

Dublin, Ireland

YURI P. KALMYKOV*

Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Moscow Region, Russia

CONTENTS

- I. Introduction
- II. Dielectric Spectra and Correlation Functions
- III. Three-Dimensional Rotational Brownian Motion in an External Potential
 - A. The Langevin Equation Approach to the Maier-Saupe Model
 - B. The Longitudinal Relaxation
 - C. The Transverse Relaxation
- IV. Further Generalization of the Rotational Diffusion Model
 - A. Rotational Diffusion Where the Dipole Moment Vector μ Is Not Parallel to the Long Molecular Axis
 - B. Comparison of Exact and Approximate Solutions
 - C. Generalization for an Arbitrary Axially Symmetric Mean Field Potential

Appendix A. Derivation of Eq. (44)

- Appendix B. Integral Representation for the Correlation Time
- Appendix C. Matrix Continued Fraction Solution of Three-Term Matrix Recurrence Relations

Acknowledgments

References

*Present address: Centre d'Études Fondamentales, Université de Perpignan, 52 Avenue de Villeneuve, 66860 Perpignan Cedex, France

Advances in Liquid Crystals: A Special Volume of Advances in Chemical Physics, Volume 113, edited by Jagdish K. Vij. Series Editors I. Prigogine and Stuart A. Rice. ISBN 0-471-18083-1. © 2000 John Wiley & Sons, Inc.