

CONTENTS

On the Statics and Dynamics of Magnetoanisotropic Nanoparticles	1
By J. L. García-Palacios	
Relaxation Times for Single-Domain Ferromagnetic Particles	211
By E. E. C. Kennedy	
One-Dimensional Ising Model for Spin Systems of Finite Size	337
By Andrzej R. Altenberger and John S. Dahler	
QUANTUM ELECTRODYNAMICS OF RESONANCE ENERGY TRANSFER	357
By Gediminas Juzeliūnas and David L. Andrews	
Author Index	411
Subject Index	419

ON THE STATICS AND DYNAMICS OF MAGNETOANISOTROPIC NANOPARTICLES

J. L. GARCÍA-PALACIOS*

Department of Materials Science—Division of Solid State Physics, Uppsala
University, Uppsala, Sweden

CONTENTS

- I. Introduction
- II. Equilibrium Properties: Generalities and Methodology
 - A. Introduction
 - B. Hamiltonian
 - 1. Effective Hamiltonian of a Nanoparticle
 - 2. Hamiltonian Studied
 - 3. Energy Barriers in the Longitudinal-Field Case
 - C. Partition Function and Free Energy
 - 1. General Definitions
 - 2. Partition Function for the Simplest Axially Symmetric Anisotropy Potential
 - 3. Particular Cases and Limiting Regimes
 - D. Series Expansions of the Partition Function
 - 1. Field Expansion of the Partition Function
 - 2. Expansion of the Partition Function in Powers of the Anisotropy Parameter
 - 3. Asymptotic Expansion of the Partition Function for Strong Anisotropy
 - E. Series Expansions of the Free Energy
 - 1. Expansion of the Logarithm of a Function
 - 2. Averages for Anisotropy Axes Distributed at Random
 - 3. Field Expansion of the Free Energy
 - 4. Expansion of the Free Energy in Powers of the Anisotropy Parameter
 - 5. Asymptotic Expansion of the Free Energy for Strong Anisotropy
- III. Equilibrium Properties: Some Important Quantities
 - A. Introduction
 - B. Thermal (Caloric) Quantities
 - 1. General Definitions
 - 2. Thermal Quantities: Particular Cases

^{*}On leave from Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, 50015 Zaragoza, Spain. Electronic addresses: jose.garcia@angstrom.uu.se and jlgarcia@posta.unizar.es.

Advances in Chemical Physics, Volume 112, Edited by I. Prigogine and Stuart A. Rice ISBN 0-471-38002-4. © 2000 John Wiley & Sons, Inc.

C. Magnetization

- 1. Magnetization: Particular Cases
- 2. General Formula for the Magnetization
- 3. Series Expansions of the Magnetization

D. Linear Susceptibility

- 1. Linear Susceptibility: Particular Cases
- 2. Formulas for the Linear Susceptibility
- 3. Generalizations
- 4. Approximate Formulas for the Linear Susceptibility
- 5. Temperature Dependence of the Linear Susceptibility

E. Nonlinear Susceptibilities

- 1. Nonlinear Susceptibilities: Particular Cases
- 2. Formulas for the Nonlinear Susceptibility
- 3. Generalizations
- 4. Approximate Formulas for the Nonlinear Susceptibility
- 5. Temperature Dependence of the Nonlinear Susceptibility

IV. Dynamical Properties: Heuristic Approach

- A. Introduction
- B. Heuristic Treatment of the Linear Dynamical Response
- C. Analysis of the Low-frequency Shliomis-Stepanov Model
 - 1. The Out-of-Phase Linear Dynamical Susceptibility and the Energy-Barrier Distribution
 - 2. The In-Phase Linear Dynamical Susceptibility
 - 3. The $\pi/2$ Law
 - 4. $\partial (T\chi')/\partial T$ and Its Relation with χ'' and the Energy-Barrier Distribution
- D. Comparison with Experiment
 - 1. Comparison with the Ising-Type and Shliomis-Stepanov Models
 - 2. Comparison of χ'' with $\partial (T\chi'/\partial T)$

V. Dynamical Properties: Stochastic Approach

- A. Introduction
- B. Deterministic Dynamics of Classical Spins
 - 1. The Gilbert and Landau-Lifshitz Equations
 - 2. General Solution for Axially Symmetric Hamiltonians
 - 3. The Simplest Axially Symmetric Hamiltonian
 - 4. Particular Cases
- C. Stochastic Dynamics of Classical Spins (Brown-Kubo-Hashitsume Model)
 - 1. Stochastic Dynamical (Langevin) Equations
 - 2. Fokker-Planck Equations
 - 3. Equations for Averages of the Magnetic Moment
 - 4. Relaxation Times
- D. Numerical Method
 - 1. Dimensionless Quantities
 - 2. Dimensionless Stochastic Landau-Lifshitz (-Gilbert) Equation
 - 3. Choice of the Numerical Scheme
 - 4. Implementation
- E. Stochastic trajectories of Individual Spins
 - 1. The Overbarrier Rotation Process
 - 2. The Effect of the Temperature
 - 3. Projection of the Magnetic Moment onto the Probing-Field Direction

- F. Dynamical Response of the Ensemble of Spins
 - 1. Dynamical Response in the Absence of a Bias Field
 - 2. Dynamical Response in a Longitudinal Bias Field
 - 3. Comparison with Different Analytic Expressions
- VI. Foundation of the Stochastic Dynamical Equations
 - A. Introduction
 - 1. Phenomenological Equations
 - 2. Dynamical Approaches to the Phenomenological Equations
 - B. Free Dynamics and Canonical Variables
 - C. Dynamical Equations for Couplings Linear in the Environment Variables
 - 1. The Spin-Environment Hamiltonian
 - 2. Dynamical Equations: General Case
 - 3. Dynamical Equations: The Spin-Dynamics Case
 - 4. Statistical Properties of the Fluctuating Terms
 - D. Dynamical Equations for Couplings Linear-Plus-Quadratic in the Environment Variables
 - 1. The Spin-Environment Hamiltonian
 - 2. Dynamical Equations: General Case
 - 3. Dynamical Equations: The Spin-Dynamics Case
 - 4. Statistical Properties of the Fluctuating Terms
 - E. Markovian Regime and Phenomenological Equations
 - 1. Markovian Regime
 - 2. Brown-Kubo-Hashitsume Model
 - 3. Garanin-Ishchenko-Panina Model
 - F. Discussion
- VII. Summary and Conclusions

Appendix A. The Functions $R^{(l)}(\sigma)$

- 1. Relations with Known Special Functions
- 2. Recurrence Relations
- 3. Series Expansions
 - a. Power Series
 - b. Asymptotic Formula for Large Positive Argument
 - c. Asymptotic Formula for Large Negative Argument
- 4. Approximate Formulas for R'/R and R''/R
 - a. Power Series
 - b. Asymptotic Formulas

Appendix B. Derivation of the Formulas for the Relaxation Times

- 1. Integral Relaxation Time
 - a. The Integral Relaxation Time and the Low-Frequency Dynamical Susceptibility
 - b. Perturbational Solution of the Fokker-Planck Equation in the Presence of a Low Sinusoidal Field
 - c. The Garanin-Ishchenko-Panina Formula
 - d. Explicit Expressions for $\Phi(z)$
- 2. Effective Transverse Relaxation Time
 - a. The Raikher-Shliomis Formula for the Transverse Dynamical Susceptibility
- b. Low-Frequency Expansion of $\chi_{\perp}(\omega)$ and Effective Transverse Relaxation Time Appendix C. Reduced Equations of Motion for Nonlinear System-Environment Couplings Acknowledgments

RELAXATION TIMES FOR SINGLE-DOMAIN FERROMAGNETIC PARTICLES

E. E. C. KENNEDY

Department of Applied Mathematics and Theoretical Physics, The Queen's University of Belfast, Belfast, Co. Antrim, Northern Ireland

CONTENTS

- I. Introduction
 - A. Purpose of This Review
 - B. Superparamagnetic Effect
 - C. Domain Structure
 - D. Relaxation Mechanisms
 - E. The Discrete-Orientation Model
 - F. The Néel Model
 - G. Brown's Model
 - H. Solutions for Axial Symmetry
 - I. Brown's Low-Energy-Barrier Approximation for Axial Symmetry
 - J. Brown's High-Energy-Barrier Approximation
- II. Characteristic Times for Nonaxially Symmetric Potentials
 - A. Magnetic Response Functions
 - B. Matrix Formulation of the Fokker-Planck Equation
 - C. Computation of the Response Function and Initial Conditions
- III. Approximation Formulas for Nonaxially Symmetric Problems
 - A. Brown's High-Energy Approximation
 - B. Analytic Solutions to Brown's High-Energy-Barrier Approximation
 - C. Kramers Low-Damping and Transition-State Results
 - D. Validity of the Approximation Formulas of Brown and Kramers as a Function of the Damping Parameter
 - E. Comparison of IHD and LD Formulas with the Exact Solution from the Fokker-Planck Equation
 - F. Validity of Asymptotic Formulas as a Function of the Field Angle
 - G. Comparison of the Asymptotes with Experimental Observations
- IV. Numerical Computation of the Fokker-Planck Matrix and the Lowest Eigenvalue
 - A. Numerical Computation of λ_1
 - B. Comparison of the Numerical Computation of λ_1 with Asymptotic Estimates
 - C. Numerical Calculation of the Correlation Time

Advances in Chemical Physics, Volume 112, Edited by I. Prigogine and Stuart A. Rice ISBN 0-471-38002-4. © 2000 John Wiley & Sons, Inc.

V. Conclusions

A. Possible Further Research

Appendix A. Orthogonal Transformations

Appendix B. Associated Legendre Functions and Spherical Harmonics

Appendix C. Further Results for λ_1

Appendix D. Further Results for T_c

Appendix E. Useful Definitions

Appendix F. List of Symbols

Acknowledgments

ONE-DIMENSIONAL ISING MODEL FOR SPIN SYSTEMS OF FINITE SIZE

ANDRZEJ R. ALTENBERGER AND JOHN S. DAHLER

Departments of Chemistry and of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota

CONTENTS

- I. Introduction
- II. Statistical Thermodynamics of Lattice-Spin Systems
- III. One-Dimensional Ising Model
 - A. The One-Dimensional Ising Ring
 - B. The One-Dimensional Ising Chain
- IV. Summary and Discussion

Acknowledgment

QUANTUM ELECTRODYNAMICS OF RESONANCE ENERGY TRANSFER

GEDIMINAS JUZELIŪNAS

Institute of Theoretical Physics and Astronomy, Vilnius, Lithuania

DAVID L. ANDREWS

School of Chemical Sciences, University of East Anglia, Norwich, England

CONTENTS

- I. Introduction
- II. General Formulation
 - A. Hamiltonian
 - B. Resonance Energy Transfer
 - C. Transfer Rates
- III. Analysis of the RDDI Tensor $\theta_{lj}(\omega, \mathbf{R})$
 - A. Vacuum Case
 - B. Photonic Bandgap Structures
 - C. RDDI in Dielectric Media
- IV. Energy Transfer in a Dielectric Medium
 - A. Inclusion of the Vibrational Structure for the Transfer Species
 - B. Range Dependence of the Fluorescence Depolarization Due to ET
 - V. Spontaneous Emission as Far-Zone Energy Transfer
 - A. Background to the Problem
 - B. Decay of an Excited Molecule in the Absorbing Medium
- VI. Dynamics of ET between a Pair of Molecules in a Dielectric Medium
 - A. Time Evolution of a Quantum System
 - B. Dynamics of Energy Transfer
 - C. Specific Situations
 - 1. Rate Description
 - 2. Nonrate Regime
- VII. Conclusion

Appendix A. Operator for the local displacement field

Appendix B. Calculation of the Tensor $\theta_{lj}(\omega, \mathbf{r})$ for the Retarded RDDI in a Dielectric Medium

Acknowledgments

Advances in Chemical Physics, Volume 112, Edited by I. Prigogine and Stuart A. Rice ISBN 0-471-38002-4. © 2000 John Wiley & Sons, Inc.