

CONTENTS

Hydrogen Bonds with Large Proton Polarizability and Proton Transfer Processes in Electrochemistry and Biology	1
By Georg Zundel	
Phase Space Approach to Dissipative Molecular Dynamics	219
By Daniela Kohen and David J. Tannor	
Microscopic Theories of the Rheology of Stable Colloidal Dispersions	399
By Robert A. Lionberger and W. B. Russel	
The Rotational g Factor of Diatomic Molecules in State $^1\Sigma^+$ or 0^+	475
By J. F. Ogilvie, J. Oddershede, and Stephan P. A. Sauer III	
A Comparative Study of Electron— and Positron—Polyatomic Molecule Scattering	537
By Mineo Kimura, Osamu Sueoka, Akira Hamada, and Yukikazu Itikawa	
Author Index	623
Subject Index	639

HYDROGEN BONDS WITH LARGE PROTON POLARIZABILITY AND PROTON TRANSFER PROCESSES IN ELECTROCHEMISTRY AND BIOLOGY

GEORG ZUNDEL

Institute of Physical Chemistry, University of Munich, D-80333 Munich, Germany

CONTENTS

- I. The Proton Polarizability of Homoconjugated Hydrogen Bonds
 - A. A Continuous Absorption in the Infrared Spectra and the Discovery of the Proton Polarizability
 - B. Various Homoconjugated Hydrogen Bonds Showing a Large Proton Polarizability
 - C. Deuteron Bonds and Deuteron Polarizabilities
 - D. Negatively Charged Hydrogen Bonds With a Large Proton Polarizability
 - E. Intramolecular Polarizable Hydrogen Bonds
 - F. The pK_a Dependence of the Proton Polarizability
 - G. Rayleigh Wings—A Second Proof for the Large Proton Polarizability
- II. Heteroconjugated Hydrogen Bonds With Large Proton Polarizabilities
 - A. The Carboxylic Acid-N-base Family of Systems
 - B. $\Delta p K_a^{50\%}$ Values With Various Families of Systems
 - C. Determination of the Molar Polarizability
 - D. Nonspecific and Specific Interactions of Polarizable Hydrogen Bonds With Their Environments
 - E. The Specific Interaction With Water Molecules
 - F. In K_{PT} and the Thermodynamic Quantities ΔH^0 and ΔS^0
 - G. The Energy Surfaces
 - H. Intramolecular Hydrogen Bonds
- III. Interaction Effects of Easily Polarizable Hydrogen Bonds With Their Environments— Their Behavior in Crystals
 - A. The Interaction of the Polarizable Hydrogen Bonds With Polaritons
 - B. The Interaction of the Polarizable Hydrogen Bonds With the Phonons of Their Environment

Advances in Chemical Physics, Volume 111, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-34990-9. © 2000 John Wiley & Sons, Inc.

- C. The Proton Dispersion Forces
- D. Hydrogen Bonds With Large Proton Polarizability in Crystals
- E. Reason for the Presence of IR Continua in Crystals
- IV. Hydrogen-Bonded Chains With a Large Proton Polarizability due to Collective Proton Motion—Pathways for Protons in Biological Membranes
 - A. Poly-α-Aminoacid-Dihydrogenphosphate Systems
 - B. Intramolecular Hydrogen-Bonded Chains
 - C. Insertion of Water Molecules in Intramolecular Hydrogen-Bonded Chains
 - D. Proton Pathways in Biological Systems
 - E. The L₅₅₀ Intermediate of Bacteriorhodopsin
 - F. The F₀ Subunit of ATP Synthases
- V. Li⁺, Na⁺, K⁺, and Be²⁺ Bonds—IR Continua and Cation Polarizabilities of These Bonds
 - A. Homoconjugated $B^+M \cdots B \rightleftharpoons B \cdots M^+B$ Bonds
 - B. Heteroconjugated $A^-M^+ \cdots B \rightleftharpoons A^- \cdots M^+B$ Bonds
 - C. Wavenumber Regions with H⁺, D⁺, Li⁺, and Na⁺ Bonds
 - D. Cation Polarizabilities due to Collective Cation Motion
 - 1. Crown Ethers
- VI. Electrochemistry: Hydrogen Bonds With a Large Proton Polarizability and the Molecular Understanding of Processes in Acid and Base Solutions
 - A. The Degree of Dissociation
 - B. Nature of the Hydrate Structures
 - C. Anomalous Proton Conductivity
 - D. Acids With pK_a Values > 0
 - E. Phosphorous-Containing Acids and Arsenic Acids
 - F. H₃O₂ With Strong Bases
- VII. Large Proton Polarizability With Families of Systems in Various pK_a Regions—MIR, FIR, and NMR Results
 - A. The Carboxylic Acid + Trimethylamine N-Oxide (TMAO) Systems
 - B. The R-Phenol + Trimethylamine N-Oxide (TMAO) Family
 - C. The Dimethanephosphinic Acid (DMP) + N-Base Systems
 - D. The Methanesulfonic Acid + Sulfoxide, Phosphinoxide, Arsinoxide Family
 - E. The Methanesulfonic Acid + Pyridine N-Oxide Family
- VIII. Easily Polarizable Hydrogen Bonds in Proteins—Studies of Model Systems
 - A. Homoconjugated Hydrogen Bonds
 - B. Heteroconjugated Hydrogen Bonds
 - C. Influence by Hydration
 - D. Proton Transfer Equilibria and Conformation
 - E. Poly- α -Amino Acid + Dihydrogenphosphate Systems
 - F. Phosphates in Biological Systems
 - IX. Significance of Hydrogen Bonds With a Large Proton Polarizability in the Catalytic Mechanisms of Enzymes
 - A. Proteinases
 - 1. Serine Proteinases
 - 2. Aspartate Proteinases
 - B. Alcohol Dehydrogenases
 - C. Maltodextrinphosphorylase

82 8 35 遊 ₩**.**

PHASE SPACE APPROACH TO DISSIPATIVE MOLECULAR DYNAMICS

DANIELA KOHEN*

Department of Chemistry, University of California, Irvine, Irvine, CA 92697

DAVID J. TANNOR

Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100 Israel

CONTENTS

- I. Introduction
- II. Phase Space Reactive Flux Approach to Activated Barrier Crossing
 - A. Preliminaries
 - 1. A Brief History of the Field
 - 2. The Method of Reactive Flux
 - 3. Distribution Function Evolution
 - B. Calculation of the Reactive Flux From the Phase Space Distribution Function
 - 1. The Fractional Reactivity Index
 - 2. Markovian Friction: Recovering Kramers's Prefactor
 - 3. Smoluchowski or High Friction Limit
 - 4. Non-Markovian Friction: Recovering the Grote-Hynes Prefactor
 - C. Time Dependence of the Reactive Flux
 - 1. Methodology
 - 2. The Role of Memory
 - D. Relation Between the Fractional Reactivity Index and the Kramers Function: The Back-Kolmogorov Approach

Advances in Chemical Physics, Volume 111, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-34990-9. © 2000 John Wiley & Sons, Inc.

^{*}Present address: Department of Chemistry, Smith College, Northampton, MA 01063.

- 1. Introduction
- 2 L^{\dagger} and the Reactive Flux Method
- 3. Applications

III. Phase Space Approach to Vibrational Relaxation

A. Preliminaries

- 1. The Traditional Approach to Population and Phase Relaxation
- 2. A Phase Space Approach to Population and Coherence Relaxation
- B. Phase Space Approach to Theories of Quantum Dissipation
 - 1. Redfield Theory and the Harmonic Oscillator Master Equation
 - 2. Wigner Representation and the Phase Space Master Equation
 - The Secular Approximation in Redfield Theory and the Violation of Translational Invariance
 - 4. Lindblad's Equation
 - 5. Numerical Illustrations
 - 6. Conclusions
- C. Phase Space Approach to Vibrational Relaxation
 - 1. The Relaxation of a Gaussian Density in Phase Space
 - 2. From Phase Space to the Energy Representation
 - 3. The Effect of the Secular Approximation
 - 4. Connection with Other Methods and Conclusions

D. Concluding Remarks

- Appendix A. Derivation of Kramers's Result in the $\eta \xi$ System of Coordinates
- Appendix B. First and Second Moments of p and q in the Redfield Equation
- Appendix C. Cycle-Averaged Rate of Energy Loss
- Appendix D. Equivalence Between the Secular and Rotating Wave Approximations
- Appendix E. Equations of Motion for the Moments in the Secular Approximation
- Appendix F. Transformation of the Gaussian Wigner Distribution to the Energy Representation

MICROSCOPIC THEORIES OF THE RHEOLOGY OF STABLE COLLOIDAL DISPERSIONS

ROBERT A. LIONBERGER

Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109

W. B. RUSSEL

Department of Chemical Engineering, Princeton University, Princeton, NJ 08544

CONTENTS

- I. Introduction
 - A. Equilibrium Microstructure
 - B. Dilute Suspension Dynamics
 - C. Concentrated Dispersions
 - 1. Simulation of Colloidal Suspensions
 - 2. Scaling Theories
 - D. Kinetic Theory
 - 1. Smoluchowski Theory
- II. Equilibrium Equations and Interparticle Potentials
 - A. Model Potentials
 - B. Equilibrium Distribution Functions
- III. Model for Particle Dynamics and Stress
 - A. Conservation Equation
 - B. Thermodynamic Closure Approximations
 - C. Microscopic Expressions for Stress
 - D. Weak Flow Expansion
- IV. Hydrodynamic Approximations
 - A. High Frequency Viscosity
 - B. Short-Time Self-Diffusion Coefficient
 - C. Pair Functions
 - 1. Step Approximation
 - 2. Lubrication Approximation

Advances in Chemical Physics, Volume 111, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-34990-9. © 2000 John Wiley & Sons, Inc.

- 3. Smooth Approximation
- 4. Polymer Layers
- V. Test of Hydrodynamic Approximations
 - A. Hard Spheres
 - B. Polymer Coated Particles
 - C. Conclusions: Test of Hydrodynamic Approximations
- VI. Test of Thermodynamic Approximations
 - A. Model Without Hydrodynamic Interactions
 - B. Viscosity
 - C. Linear Viscoelasticity
 - D. Nonequilibrium Structure
 - E. Conclusions: Test of Thermodynamic Approximations
- VII. Test of Combined Approximations
 - A. Hard Sphere Viscosity
 - B. Hard Sphere Linear Viscoelasticity
 - C. Hard Sphere Nonequilibrium Structure
 - D. Viscosity of Polymer-Coated Particles
 - E. Conclusions: Test of Combined Approximations
- VIII. Bimodal and Polydisperse Colloidal Dispersions
 - A. Multicomponent Theory
 - B. Viscosity of Bimodal Suspensions
 - C. Viscosity of Polydisperse Suspensions
 - D. Conclusions: Bimodal and Polydisperse Suspensions

Appendix: Numerical Solutions

THE ROTATIONAL g FACTOR OF DIATOMIC MOLECULES IN STATE $^1\Sigma^+$ OR 0^+

J. F. OGILVIE

Centre for Experimental and Constructive Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6 Canada

J. ODDERSHEDE

Department of Chemistry, Odense University, DK-5230 Odense M, Denmark

STEPHAN P. A. SAUER

Chemistry Laboratory IV, Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark

CONTENTS

- I. Introduction
 - A. Description of Phenomena
 - B. Chronicle of Origins of Rotational g Factor
 - C. Definition of Magnetic Quantities
 - 1. Magnetizability
 - 2. Rotational g Factor
 - 3. Relation Between Rotational g Factor and Electric Dipolar Moment
 - 4. Relation Between Rotational g Factor and Electric Quadrupolar Moment
 - D. Relation of Rotational g Factor to an Effective Hamiltonian
- II. Experimental Methods
 - A. Molecular Beams
 - B. Microwave Spectrometry With Zeeman Effect
 - C. Magnetic Resonance in the Far Infrared Region

Advances in Chemical Physics, Volume 111, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-34990-9. © 2000 John Wiley & Sons, Inc.

- D. Infrared Spectrometry and Magnetic Circular Dichroism
- E. Frequency Data From Samples Without Applied Fields

III. Theoretical Methods

- A. General Considerations
- B. Calculations of Polarization Propagators
- C. Second-Derivative Methods

IV. Applications

- A. Sign of Permanent Electric Dipolar Moment
- B. Experimental Magnetizability
- C. Evaluation of Adiabatic and Nonadiabatic Effects
- D. Accurate Equilibrium Lengths of Chemical Bonds

V. Discussion And Conclusion

- A. Physical Interpretation of Rotational g Factor
- B. Rotational and Vibrational Dependences of gr
- C. Remarks on g_r in Electronic States Other Than $^1\Sigma^+$ or 0^+
- D. Accuracy of Experimental and Computed Rotational g Factors
- E. Zeeman Effect and Rotational g Factor in Molecular Research

Appendix

Acknowledgments

A COMPARATIVE STUDY OF ELECTRON- AND POSITRON-POLYATOMIC MOLECULE SCATTERING

MINEO KIMURA

Graduate School of Science and Engineering, Yamaguchi University, Ube, Japan and Institute for Molecular Science, Okazaki, Japan

OSAMU SUEOKA

Graduate School of Science and Engineering, Yamaguchi University, Ube, Japan

AKIRA HAMADA

Department of Physics, Yamaguchi University, Yamaguchi, Japan

YUKIKAZU ITIKAWA

Institute of Space and Astronautical Science, Sagamihara, Japan

CONTENTS

- I. Introduction
- II. Experimental Method
 - A. Overview
 - B. Measurement of Total Cross Section for Positron Scattering
 - 1. General Background
 - 2. Experiment at Yamaguchi University
 - C. Inelastic Scattering of Positron
 - 1. Overview

Advances in Chemical Physics, Volume 111, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-34990-9. © 2000 John Wiley & Sons, Inc.

- 2. Experiment Using a Weak Positron Source
- 3. Experiment Using a Strong Positron Source
- D. Positronium (Ps) Formation
 - 1. Overview of the Ps Formation Experiment
 - Ps Formation Measurement Based on the Hybrid Method at Yamaguchi University
- E. Elastic Scattering
 - 1. Overview
 - 2. Differential Cross Sections (DCS) of Elastic Scattering
 - 3. DCS Measurement Using an Axial Magnetic Field
- F. Positron Experiment in the Future
- III. Theoretical Aspects of Electron and Positron Scattering
 - A. Hamiltonian and Scattering Dynamics
 - 1. Hamiltonian
 - 2. Scattering Dynamics
 - B. Electron- and Positron-Molecule Interaction
 - 1. Static and Correlation-Polarization Interaction
 - 2. Exchange Interactions
 - C. Positronium Formation
 - D. Weak Interaction Approximation
 - E. Resonance
- IV. Experimental Results and Analysis
 - A. Total cross section
 - 1. Small Molecules
 - 2. Medium-Size Molecules
 - 3. Large Molecules
 - B. Differential Cross Sections
 - C. Ionization and Electronic Excitation
 - 1. Ionization
 - 2. Electronic Excitation
 - D. Vibrational and Rotational Excitation
 - E. Positronium Formation and Positron Attachment
 - F. Positron-Surface Interactions and Positron Slowing-Down in Condensed Phase
- V. Concluding Remarks

Acknowledgments

