CONTENTS

xi

Preface						
1 Introduction						
T	1.1	Brief description of spheromaks	1			
	1.2	History and time-line	6			
2	2 Basic Concepts					
4	2.1	Vacuum magnetic fields	17 17			
	2.1	Poloidal and toroidal fields	18			
	2.2	Magnetic stress tensor	20			
	2.5	Beta	24			
	2.5	Magnetic flux and symmetry	24			
	2.6	Poloidal flux	24			
	2.7	Poloidal flux and particle confinement	25			
	2.8	Relation between field, field lines, and flux	26			
	2.9	Safety factor	28			
	2.10	The plasma as a magnetic flux conserver	32			
	2.11		33			
	2.12	Tendency of the plasma to maximize its inductance	35			
	2.13	Cowling's theorem	35			
3	Magne	tic Helicity	37			
	3.1	The issue of analyticity in Gauss's and Stokes's theorems	37			
	3.2	Definition of magnetic helicity	39			
	3.3	Helicity, safety factor, and twist of an isolated flux tube	42			
	3.4	Gauge invariance	45			
	3.5	Relative helicity	45			
	3.6	Simply connected volumes v. doubly connected volumes	49			
	3.7	Helicity conservation equation	50			
	3.8	Single species helicity	58			
	3.9	Magnetic reconnection	60			
	3.10		61			
	3.11	Magnetic reconnection and helicity conservation	63			
	3.12	Reconnection and dissipation	66			
4	Relaxa	tion of an Isolated Configuration to the Taylor State	71			
	4.1	Introduction	71			

vii

viii

Contents

ix

4.2	Helicity decay rate v. magnetic energy decay rate	72	11 Analysis of Driven Spheromaks: Strong Coupling	155
4.3	Derivation of the isolated Taylor state	73	11.1 Force-free equilibria with open field lines	156
4.4	Relationship between helicity, energy, eigenvalue	75	11.2 Flux surfaces	162
4.5	Cylindrical force-free states	77	11.3 Safety factor variation with lambda	167
4.6	Comparison of minimum energy states in a long cylinder	79	11.4 Flux amplification	170
4.7	Spheromaks in spherical geometry	80	11.5 Relative helicity	171
5 Delavo	tion in Driven Configurations	87	11.6 Relative energy	174
			11.7 Gun efficiency	175
5.1	Taylor relaxation in systems with open field lines	87	11.8 Gun impedance and load line	177
5.2 5.3	Helicity injection Impedance of the driven force-free configuration	91 92		100
5.5	impedance of the driven force-free configuration	92	12 Helicity Flow and Dynamos	183
6 The M	HD Energy Principle, Helicity, and Taylor States	95	12.1 Downhill flow of helicity	183
	Derivation of the MHD Energy Principle	95	12.2 Dynamos and relaxation mechanisms	185
6.2	Relationship of the energy principle to Taylor states	101	12.3 Observations of dynamo behavior	189
6.3	Beta limit	101	12.4 Deviation from the Taylor state	196
0.5	Deta lillit	105	12.5 MHD dynamo, helicity flux, and lambda gradient	199
7 Survey of Spheromak Formation Schemes 109		109	13 Confinement and Transport in Spheromaks	207
7.1	Magnetized coaxial gun	110	13.1 Overview	207
7.2	Non-axisymmetric gun method	117	13.2 Confinement times	207
7.3	The inductive method	117	13.3 Survey of transport mechanisms	209 209
7.4	Z-Theta pinch method	120	13.4 Experiments on transport in spheromaks	
			13.5 Anomalous ion heating	218 222
8 Classif	fication of Regimes: an Imperfect Analogy to		15.5 Anomalous ion nearing	
	Thermodynamics	123	14 Some Important Practical Issues	227
8.1	Analogy to thermodynamics	123	14.1 Breakdown and Paschen curves	227
8.2	Classification of thermodynamic problems	123	14.2 Gas puff valves	232
8.3	Analogy between lambda and temperature	126	14.3 Wall desorption and contamination	232
8.4	Strong and weak coupling	128	14.4 Impurity line radiation	236
8.5	Overview of next five chapters	128	14.5 Refractory electrode materials	230
0 A		120	14.6 Skin effect and the wall as a flux conserver	239
•	sis of Isolated Cylindrical Spheromaks	129	14.7 Inductance budget	240
9.1	Flux, current, magnetic field, helicity and energy	129	14.8 Mechanical forces	241
9.2	Experimental measurements	135	14.9 Noise radiation from pulsed power supplies	241
9.3	Safety factor	136	14.10 Ground loops	241
10 The R	ole of the Wall	143	•	
10.1 Helicity insulation		143	15 Basic Diagnostics for Spheromaks	243
	Equilibrium	143	15.1 Magnetic field and electric current measurement	243
	Tilt stability	145	15.2 Equilibrium reconstruction using measurements at the wall	248
10.5	Int statinty	140	15.3 Voltage measurements	248

Contents

15.4	Density measurement	249	
15.5	Ion temperature measurement	255	
15.6	Electron temperature measurement	257	
15.7	Impurity radiation measurements	260	
16 Applications of Spheromaks			
16.1	The spheromak as a fusion reactor	263	
16.2	Accelerated spheromaks	269	
16.3	Tokamak Fuel injection	274	
16.4	Helicity injection current drive in tokamaks	275	
16.5	Colliding spheromaks to investigate magnetic reconnection	277	
16.6	Proposed additional spheromak applications	281	
17 Solar a	283		
17.1	Sun-Earth connection viewed as helicity flux/relaxation	291	
17.2	A spheromak-like laboratory model of solar prominences	293	
	S-shapes	297	
17.4	Flux tube bifurcation and breakup	298	
17.5	Comparison of magnetic field, field lines, flux tubes	299	
17.6	Relaxation and line tying	300	
17.7	Prominence simulation experiment	300	
Reference	S	303	
Appendix	A: Vector Identities and Operators	315	
Appendix B: Bessel Orthogonality Relations			
Appendix C: Capacitor Banks			
Appendix D: Selected Formulae			

333

Index

х