Contents

Preface	ix
Chapter 1. Introduction	
1.1. Density ducts in the earth's magnetosphere	1
1.2. Artificial density ducts created with strong electromagnetic fields	
in magnetized plasmas	5
1.3. The results of model laboratory and active ionospheric experiments	
on observation of artificial ducts	10
Chapter 2. The Basic Equations	
2.1. Introduction	17
2.2. Maxwell's equations	17
2.3. The constitutive relations	19
2.4. The notations $\boldsymbol{\mathcal{H}}, \boldsymbol{\mathcal{J}}^e$ and \mathbf{H}, \mathbf{J}^e	22
2.5. Dispersion properties of characteristic modes in a magnetoplasma	23
2.5.1. Dispersion equation	23
2.5.2. The functions $p_{o,x}$ and $q_{1,2}$	27
2.6. The refractive index surfaces in some frequency bands	29
Chapter 3. Radiation from Given Sources in a Uniform	
Unbounded Magnetoplasma	
3.1. Introduction	37
3.2. General representation of source-excited fields	37
3.3. Power radiated	45
3.3.1. Integral formulation of the radiated power	45
3.3.2. Radiated power distribution over the spatial spectrum	48
3.4. Radiation from a linear electric current	49
3.4.1. Parallel orientation of a source	50
3.4.2. Perpendicular orientation of a source	57
3.5. Radiation from a ring electric current	60
3.5.1. Uniform current distribution	60
3.5.2. Nonuniform current distribution	64 60
3.6. Radiation from a ring magnetic current	69 70
3.7. On the definition of the radiation pattern	72

Chapter 4. Modes in Axially Uniform Ducts

4.1. Introduction	79
4.2. The basic equations for modes of ducts	80
4.2.1. The field equations	80
4.2.2. The field solutions for a uniform plasma	85
4.2.3. The field solutions for a uniform duct	87
4.2.4. The dispersion equation for the modes of a uniform duct	91
4.3. Bound and leaky modes	94
4.4. Uniform duct without collision damping — the dispersion properties	
of modes	100
4.4.1. The axisymmetric eigenmodes of a cylindrical enhancement	101
4.4.2. The axisymmetric leaky modes of a cylindrical enhancement	104
4.4.3. Some extension to the case of nonsymmetric modes	111
4.4.4. Modes of a plane duct with enhanced density	115
4.4.5. Modes of a cylindrical trough	116
4.5. Uniform duct without collision damping — field distribution	117
4.6. Mode synthesizing using Brillouin's concept	125
4.7. The effect of collisions on the characteristics of modes	130
4.8. Radially nonuniform duct with a monotonic density profile	135
4.9. Radially nonuniform duct with a nonmonotonic density profile	142

Chapter 5. Integral Representation of Source-excited

Fields on a Duct

5.1. Introduction	148
5.2. The field equations	149
5.3. Fields of ring currents, for a uniform duct	151
5.4. Analytic properties of the functions $q_{1,2}$	157
5.5. Fields of ring currents, for a uniform duct (continued)	159

Chapter 6. Modal Representation of Source-excited

Fields on a Duct

6.1. Introduction. The boundary-value problem for a duct	167
6.2. The eigenfunction set for the nonuniform duct	170
6.2.1. Some mathematical developments	170
6.2.2. Field on the source-free duct	172
6.2.3. The eigenfunction expansion	179
6.3. The eigenfunction set for the uniform duct	183

6.4. Mode orthogonality	185
6.5. Calculation of modal excitation coefficients	190
6.6. Analytic properties of the functions $p_{\alpha}(q)$ and $q_{\alpha}(q)$	196
6.7. Separation of leaky modes from the continuous spectrum	200
6.8. On the relation between alternative field representations	205
6.9. Note on the limiting transition to the case of a uniform plasma	206
6.10. The radiation field	207
6.11. The radiation pattern and the total radiated power	213
6.12. Radiated power distribution over the spatial spectrum of excited	
waves	215
6.13. Some numerical results for ring currents	217

Chapter 7. Wave Propagation Along Axially Nonuniform Ducts

7.1. Introduction	221
7.2. The local field-structure. The method of local modes	222
7.3. Coupled local-mode equations	225
7.4. Alternative form of the coupling coefficients	227
7.5. The WKB solutions for guided modes	229
7.6. The use of successive approximations. Conditions for the validity	
of the WKB solutions	230

Chapter 8. Wave Re-emission from a Density Duct

8.1. Introduction	235
8.2. Fields of local modes	236
8.3. The use of Huygens' principle and Kirchhoff's approximation	238
8.4. The distribution of fictitious sources on the radiating aperture	240
8.5. The characteristics of radiation re-emitted from the duct end	243
8.6. Some numerical examples	246
8.7. The use of artificial density ducts for increasing power radiated from	
VLF/ELF sources	251
Bibliography	253
Index of definitions of the more important symbols	264
Author index	269
Subject index	272