Contents

Preface ix
Chapter 1. Introduction
1.1. Density ducts in the earth's magnetosphere 1
1.2. Artificial density ducts created with strong electromagnetic fields in magnetized plasmas 5
1.3. The results of model laboratory and active ionospheric experiments on observation of artificial ducts 10
Chapter 2. The Basic Equations
2.1. Introduction 17
2.2. Maxwell's equations 17
3. The constitutive relations 19
2.4. The notations $\boldsymbol{\mathcal { H }}, \boldsymbol{J}^{e}$ and $\mathbf{H}, \mathbf{J}^{e}$ 22
2.5. Dispersion properties of characteristic modes in a magnetoplasma 23
2.5.1. Dispersion equation 23
2.5.2. The functions $p_{\mathrm{o}, \mathrm{x}}$ and $q_{1,2}$ 27
2.6. The refractive index surfaces in some frequency bands 29
Chapter 3. Radiation from Given Sources in a Uniform Unbounded Magnetoplasma
3.1. Introduction 37
3.2. General representation of source-excited fields 37
3.3.1. Integral formulation of the radiated power 45
3.3.2. Radiated power distribution over the spatial spectrum 48
4. Radiation from a linear electric curren 49
3.4.1. Parallel orientation of a source 50
3.5. Radiation from a ring electric current 60
3.5.1. Uniform current distribution 60
3.5.2. Nonuniform current distribution 64
Radiation from a ring magnetic curren 72
Chapter 4. Modes in Axially Uniform Ducts
4.1. Introduction79
4.2. The basic equations for modes of ducts 80
4.2.1. The field equations 80
4.2.2. The field solutions for a uniform plasma 85
4.2.3. The field solutions for a uniform duct 87
4.2.4. The dispersion equation for the modes of a uniform duct 91
4.3. Bound and leaky modes 94
4.4. Uniform duct without collision damping - the dispersion properties of modes 100
4.4.1. The axisymmetric eigenmodes of a cylindrical enhancement 01
4.4.2. The axisymmetric leaky modes of a cylindrical enhancement 104
4.4.3. Some extension to the case of nonsymmetric modes 111
4.4.4. Modes of a plane duct with enhanced density 115
4.5. Modes of a cylindrical trough 116
4.5. Uniform duct without collision damping - field distribution 117
4.6. Mode synthesizing using Brillouin's concept 125
4.7. The effect of collisions on the characteristics of modes 130
4.8. Radially nonuniform duct with a monotonic density profile 135
4. Radially nonuniform duct with a nonmonotonic density profile 142
Chapter 5. Integral Representation of Source-excited Fields on a Duct
5.1. Introduction 148
5.2. The field equations 149
5.3. Fields of ring currents, for a uniform duct 151
5.4. Analytic properties of the functions $q_{1,2}$ 157
5.5. Fields of ring currents, for a uniform duct (continued) 159
Chapter 6. Modal Representation of Source-excited Fields on a Duct
6.1. Introduction. The boundary-value problem for a duct 167
6.2. The eigenfunction set for the nonuniform duct 170
6.2.1. Some mathematical developments 170
6.2.2. Field on the source-free duct 179
6.3. The eigenfunction set for the uniform duct 183
6.4. Mode orthogonality 185
6.5. Calculation of modal excitation coefficients 190
6.6. Analytic properties of the functions $p_{\alpha}(q)$ and $q_{\alpha}(q)$ 196
6.7. Separation of leaky modes from the continuous spectrum 200
6.8. On the relation between alternative field representations 205
6.9. Note on the limiting transition to the case of a uniform plasma 20
6.10. The radiation field 207
6.11. The radiation pattern and the total radiated power 213
6.12. Radiated power distribution over the spatial spectrum of excited waves 215
6.13. Some numerical results for ring currents 217
Chapter 7. Wave Propagation Along Axially Nonuni- form Ducts
7.1. Introduction 221
7.2. The local field-structure. The method of local modes 222
7.3. Coupled local-mode equations 225
7.4. Alternative form of the coupling coefficients 227
7.5. The WKB solutions for guided modes 229
7.6. The use of successive approximations. Conditions for the validity of the WKB solutions 230
Chapter 8. Wave Re-emission from a Density Duct
8.1. Introduction235
8.2. Fields of local modes 236
8.3. The use of Huygens' principle and Kirchhoff's approximation 238
8.4. The distribution of fictitious sources on the radiating aperture 240
8.5. The characteristics of radiation re-emitted from the duct end 243
8.6. Some numerical examples246
8.7. The use of artificial density ducts for increasing power radiated from VLF/ELF sources 251
Bibliography 253
Index of definitions of the more important symbols 264
Author index 269
Subject index 272

