

CONTENTS

A CRITICAL ASSESSMENT OF THE COUPLED CLUSTER METHOD IN QUANTUM CHEMISTRY By Josef Paldus and Xiangzhu Li	1
On the Electronic Spectra of Small Linear Polyenes By Ruth McDiarmid	177
Understanding Electron Correlation: Recent Progress in Molecular Synchrotron Photoelectron Spectroscopy By A.D.O Bawagan and E.R. Davidson	215
Developments in Parallel Electronic Structure Theory By G.D. Fletcher, M.W. Schmidt and M.S. Gordon	267
Experimental and Theoretical Bubble Dynamics By W. Lauterborn, T. Kurz, R. Mettin and C.D. Ohl	295
Acid—Base Proton Transfer and Ion Pair Formation in Solution By Koji Ando and James T. Hynes	381
Structures, Spectroscopies, and Reactions of Atomic Ions with Water Clusters By Kiyokazu Fuke, Kenro Hashimoto, and Suehiro Iwata	431

A CRITICAL ASSESSMENT OF COUPLED CLUSTER METHOD IN QUANTUM CHEMISTRY

JOSEF PALDUS

Max-Planck-Institute for Astrophysics, Karl-Schwarzschild Str. 1, Postfach 1523, 85740 Garching, Germany,

and

Department of Applied Mathematics,* Department of Chemistry, and Guelph-Waterloo Center for Graduate Work in Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

XIANGZHU LI

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

CONTENTS

Abstract

- I. Introduction
 - A. Historical Outline
 - B. Scope of the Review
- II. Methodology
 - A. Basic Notation: Second vs. First Quantization
 - B. Many-Body Perturbation Theory (MBPT): Origins of Coupled-Cluster (CC) Ansatz
 - C. Single-Reference Coupled-Cluster (SR CC) Approaches
 - 1. General Spin-Orbital Formalism
 - 2. Coupled-Cluster Method with Singles and Doubles (CCSD)
 - 3. Spin Adaptation
 - 4. Beyond CCSD
 - 4.1. Standard Full Approaches (CCSDT, etc.)
 - 4.2. Perturbative Approaches [CCSD(T), etc.]
 - 4.3. Other Approximate Approaches (ACCSD, ACPQ, etc.)

^{*}Permanent address.

Advances in Chemical Physics, Volume 110, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-33180-5. © 1999 John Wiley & Sons, Inc.

- D. Multireference Coupled-Cluster (MR CC) Approaches
 - 1. Effective Hamiltonian Formalism
 - 2. Proper MR CC Approaches
 - 2.1. Valence-Universal CC Methods
 - 2.2. State-Universal CC Methods
 - 3. State-Selective, or State-Specific (SS), Approaches
 - 3.1. SS MR CC Method of Adamowicz et al.
 - 3.2. Unitary Group Approach (UGA)-Based CCSD Methods
 - 3.3. Externally Corrected CCSD Methods
- E. Related Approaches
 - 1. Many-Body Perturbation Theory (MBPT)
 - 2. Quadratic Configuration Interaction (QCI)
- F. Coupled-Cluster Approaches to Properties
 - 1. Direct Calculation of Expectation Values
 - 2. Finite-Field Approaches
 - 3. Linear-Response (LR) Approaches
 - 4. Equations-of-Motion (EOM)-Based Approaches
- G. Computational Aspects
 - 1. Orbital Choice
 - 2. Basic Algorithms and Numerical Techniques
 - 3. Automated Generation of Computer Codes

III. Applications

- A. Correlation Energies
- B. Potential-Energy Surfaces (PESs) and Related Properties
 - 1. Equilibrium Geometries
 - 2. Dissociation Energies
 - 3. Full Potential-Energy Surfaces
 - 4. Vibrational Frequencies
- C. Ionization Potentials and Electron Affinities
- D. Electronic Excitation Energies and Excited-State PESs
- E. Static Properties (Dipole Moments, etc.)
- F. Dynamic Properties
- IV. Conclusions and Future Prospects

Appendix A: Algebra of Replacement Operators

Appendix B: List of Acronyms

Acknowledgments

ON THE ELECTRONIC SPECTRA OF SMALL LINEAR POLYENES

RUTH McDIARMID

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,

Bethesda, Maryland 20892-0510

CONTENTS

- I. Introduction
- II. Experimental Techniques
- III. Ethylene
- IV. Butadiene
- V. Hexatriene
- VI. Valence-Excited States
- VII. Evaluation of Numerical Calculations of Transition Energies in Polyenes
- VIII. Concluding Remarks
 References

UNDERSTANDING ELECTRON CORRELATION: RECENT PROGRESS IN MOLECULAR SYNCHROTRON PHOTOELECTRON SPECTROSCOPY

A. D. O. BAWAGAN

Ottawa-Carleton Chemistry Institute Carleton University, Ottawa, Ontario K1S 5B6, Canada

E. R. DAVIDSON

Department of Chemistry Indiana University, Bloomington, Indiana 47405, USA.

CONTENTS

- I. Introduction
- II. Experimental Details
- III. Theoretical Details
- IV. Survey of Synchrotron Photoelectron Spectroscopy of Molecules (Post-1986)
 - A. Alkanes and Alkenes
 - B. Intrinsic Correlations and Dynamic Correlations
 - C. Acetylene, Allene, and Butadiene
 - D. Other Molecular Systems
- V. Comparison of EMS and PES Intensities
- VI. Developing Practical Pictures of Electron Correlation Effects
- VII. Conclusions

Acknowledgments

References

Appendix A

Advances in Chemical Physics, Volume 110, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-33180-5. © 1999 John Wiley & Sons, Inc.

DEVELOPMENTS IN PARALLEL ELECTRONIC STRUCTURE THEORY

G. D. FLETCHER, M. W. SCHMIDT, and M. S. GORDON

Iowa State University, Ames, IA

CONTENTS

- I. Introduction
 - A. Porting versus Parallelization
- II. Parallel MP2 Gradient Algorithm
 - A. Integral Classes 1-4
 - B. Three-Virtual Terms
 - C. Solution of Z-Vector Equations
 - D. Back-Transformation
 - E. Summary
- III. Timings and Applications
 - A. Numeric MP2 Hessian of TATB
 - B. HEDM Molecular Structure
- IV. Conclusion

Acknowledgments

EXPERIMENTAL AND THEORETICAL BUBBLE DYNAMICS

W. LAUTERBORN, T. KURZ, R. METTIN, and C. D. OHL

Universität Göttingen, Göttingen, Germany

CONTENTS

- I. Introduction
- II. Classification of Cavitation Bubble Generation
- III. Cavitation Bubble Production Devices
- IV. Cavitation Threshold
- V. Single-Bubble Dynamics in a Sound Field
 - A. Experimental Observations
 - B. Theoretical Description
- VI. Single Laser-Induced Bubble Dynamics
 - A. Spherical Bubble Dynamics
 - B. Spherical Laser Bubble Luminescence
 - C. Aspherical Bubble Dynamics
 - D. Aspherical Laser Bubble Luminescence
- VII. Two-Bubble Systems
- VIII. Few-Bubble Systems
 - IX. Many-Bubble Systems
 - A. High-Speed Cinematography
 - B. Cavitation Noise
 - C. Light Transmission
 - D. High-Speed Holographic Cinematography
 - E. Digital Image Processing
 - F. Multibubble Sonoluminescence
 - X. Theory of Many-Bubble Systems
 - XI. Summary

Acknowledgments

ACID-BASE PROTON TRANSFER AND ION PAIR FORMATION IN SOLUTION

KOJI ANDO

Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

JAMES T. HYNES

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA

CONTENTS

- I. Introduction
- II. General Issues and Model Studies
 - A. Some General Considerations
 - B. Valence Bond Study in a Dielectric Continuum Solvent
 - C. Molecular Dynamics of Acid-Base Proton Transfer
- III. Ionization of Hydrochloric Acid in Water
 - A. Introduction
 - B. Potentials and Computational Methods
 - C. Second Proton-Transfer Step
 - D. Ionization of Hydrofluoric Acid in Water
- IV. Concluding Remarks

Acknowledgments

STRUCTURES, SPECTROSCOPIES, AND REACTIONS OF ATOMIC IONS WITH WATER CLUSTERS

KIYOKAZU FUKE

Department of Chemistry, Kobe University, Kobe, 657-8501 Japan

KENRO HASHIMOTO

Computer Center, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, 192-0397 Japan

SUEHIRO IWATA

Institute for Molecular Science, Okazaki, 444-8585 Japan

CONTENTS

- I. Introduction
- II. Group 1 (Alkali) Metals
 - A. Size Dependence of the Ionization Energy
 - 1. Experimental Study
 - 2. Theoretical Study
 - B. Photoelectron Spectroscopy of Solvated Metal Anions
 - 1. Experimental Study
 - 2. Theoretical Study
 - C. Ammoniated Metal Anions for Comparison with Hydrated Clusters
 - 1. Experimental Study
 - 2. Theoretical Study
- III. Group 2 Elements
 - A. Collision Reactions of Metal Ions with Water Clusters
 - 1. Product Switches
 - 2. Ab initio MO Studies
 - 3. Analysis of the Product Switches

Advances in Chemical Physics, Volume 110, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-33180-5. © 1999 John Wiley & Sons, Inc.

- B. Photodissociation Spectra and the Dissociation Process
 - 1. Photodissociation Spectra of Mg⁺(H₂O)_n
 - 2. Ab initio MO Studies of the Vertical Excitation Energies
 - 3. Photodissociation Spectra of Ca⁺(H₂O)_n
 - 4. Photodissociation Process of $Mg^+(H_2O)_n$ and $Ca^+(H_2O)_n$
- IV. Group 13 Elements
 - A. Photoionization of $Al(H_2O)_n$
 - B. Photodissociation of $Al^+(H_2O)_n$
 - C. Unimolecular Fragmentation Reactions
 - D. Intracluster Reactions of $[B(H_2O)_n]^+$ Studied by a Hybrid Procedure of Ab Initio MO Calculations and Monte Carlo Samplings
 - V. Halogen-Water Cluster Anions
 - A. Incremental Enthalpy Changes and Structures of the Clusters
 - B. Photoelectron Spectra of $X^{-}(H_2O)_n$
 - C. Vibrational Spectroscopy
 - D. MD and MC Simulations of the Clusters
- VI. Summary and Concluding Remarks

Acknowledgments

