CONTENTS

On the Theory of the Complex, Frequency-Dependent Susceptibility of Magnetic Fluids	1
By B. K. P. Scaife	
SIMULATING MOLECULAR PROPERTIES OF LIQUID CRYSTALS	39
By J. Crain and A. V. Komolkin	
Molecular-Based Modeling of Water and Aqueous Solutions at Supercritical Conditions	115
By Ariel A. Chialvo and Peter T. Cummings	
Polar and Nonpolar Solvation Dynamics, Ion Diffusion, and Vibration Relaxation: Role of Biphasic Solvent Response in Chemical Dynamics	207
By Biman Bagchi and Ranjit Biswas	
SPATIAL PATTERNS AND SPATIOTEMPORAL DYNAMICS IN CHEMICAL SYSTEMS	435
By A. De Wit	
AUTHOR INDEX	515
Subject Index	549

ON THE THEORY OF THE COMPLEX, FREQUENCY-DEPENDENT SUSCEPTIBILITY OF MAGNETIC FLUIDS

B. K. P. SCAIFE

School of Engineering, Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland

CONTENTS

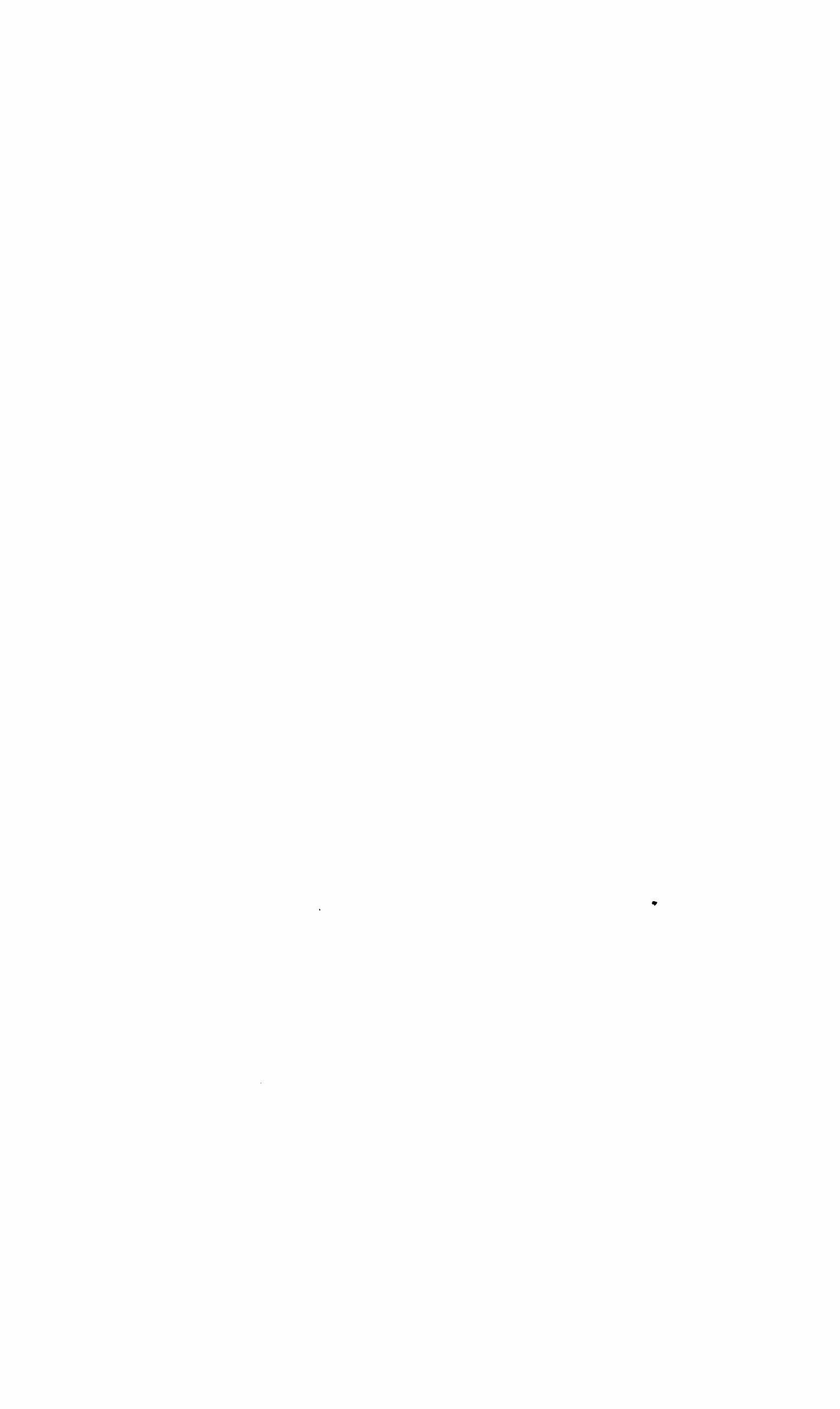
- I. Introduction
- II. Resonance absorption
 - A. Lorentz (Type I) Absorption
 - B. Van Vleck-Weisskopf-Fröhlich (Type II) Absorption
 - C. Comparison of the Two Types of Absorption
- III. Ferromagnetic Resonance: Theory of Landau and Lifshitz
- IV. Some Results from the Theory of Linear Systems
- V. Some Results from Fluctuation Theory
 - A. Basic Relations
 - B. Particular Results
 - 1. The Kubo Relation
 - 2. Correlation Function for a Random Telegraph Signal
 - 3. Correlation for a Sinusoid with Random Abrupt Changes in Phase
- VI. Longitudinal and Transverse Polarizabilities for a Fixed, Spherical, Single-Domain Particle
 - A. Zero-Frequency Polarizabilities
 - B. Frequency-Dependent Longitudinal Polarizability
 - C. Frequency-Dependent Transverse Polarizability

VII. Calculation of the Frequency-Dependent, Complex Susceptibility of a Magnetic Fluid Appendix A. Comparison of the Functions Ψ_D , Ψ_I , and Ψ_{II} Appendix B. Different Forms of the Type II Resonance Equation Acknowledgments

Advances in Chemical Physics, Volume 109, Edited by I. Prigogine and Stuart A. Rice ISBN 0-471-32920-7 © 1999 John Wiley & Sons, Inc.

MOLECULAR-BASED MODELING OF WATER AND AQUEOUS SOLUTIONS AT SUPERCRITICAL CONDITIONS

ARIEL A. CHIALVO AND PETER T. CUMMINGS


Department of Chemical Engineering, University of Tennessee, Knoxville, TN 37996-2200 and Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6181

CONTENTS

- I. Introduction
- II. Supercritical Water
 - A. Microstructural Analysis, Hydrogen-Bonding Characterization, and the Interplay between Experiment and Molecular Simulation
 - B. Simulation Approaches to Microscopic Behavior
 - 1. Classical Molecular Simulations
 - a. Intermolecular Potentials
 - b. Simulation Results
 - i. Ambient Conditions
 - ii. High-Temperature Conditions
 - (a) Oxygen-Oxygen Radial Distribution Functions
 - (b) Oxygen-Hydrogen Radial Distribution Functions
 - (c) Hydrogen-Hydrogen Radical Distribution Functions
 - c. Hydrogen Bonding
 - 2. Ab Initio Simulations
 - C. Discussion
- III. Supercritical Aqueous Solutions
 - A. Molecular Simulation of Supercritical Aqueous Solutions
 - 1. Intermolecular Potentials and Structure of Infinite Dilute Solutions
 - a. Ion Speciation in High-Temperature Electrolyte Solutions
 - b. Solvent Properties in the Vicinity of an Ion
 - B. Solvation Formalism
 - 1. Solvation Thermodynamics
 - 2. Solvation Effects on Kinetic Rate Constants
 - C. Discussion
- IV. Final Remarks

Acknowledgments

Advances in Chemical Physics, Volume 109, Edited by I. Prigogine and Stuart A. Rice ISBN 0-471-32920-7 © 1999 John Wiley & Sons, Inc.

POLAR AND NONPOLAR SOLVATION DYNAMICS, ION DIFFUSION, AND VIBRATIONAL RELAXATION: ROLE OF BIPHASIC SOLVENT RESPONSE IN CHEMICAL DYNAMICS

BIMAN BAGCHI AND RANJIT BISWAS

Solid State and Structural Chemistry Unit, Indian Institute of Science,

Bangalore 560 012, India

CONTENTS

- I. Introduction
 - A. Polar Solvation Dynamics
 - 1. Solvation Time Correlation Function
 - 2. Continuum Models
 - 3. Early Experimental Investigations: Phase I
 - 4. Inhomogeneous Continuum Models
 - 5. Experimental Discovery of Ultrafast Polar Solvation: Phase II
 - 6. Solvation Dynamics in Supercritical Water
 - B. Solvation Dynamics in Mixed Solvents
 - C. Dynamics of Electron Solvation
 - D. Solvation Dynamics in Nonpolar Liquids
 - E. Vibrational Relaxation
 - F. Limiting Ionic Conductivity
 - 1. Kohlrausch's Law and Walden's Rule
 - 2. Experimental Observations: Breakdown of Walden's Rule
 - G. Scope of the Review
- II. Progress in the Development of Microscopic Theories
 - A. Introduction
 - 1. Theory of Calef and Wolynes
 - 2. Dynamic Mean Spherical Approximation Model
 - 3. Theory of Chandra and Bagchi: Importance of Solvent Translational Modes
 - 4. Theory of Fried and Mukamel: Memory Function Approach
 - 5. Theory of Wei and Patey: Use of the Kerr Approximation

- B. Recent Theoretical Developments
 - 1. Surrogate Hamiltonian Theory of Friedman and Co-Workers
 - 2. Underdamped Non-Markovian Theory with Solvent Inertia: The Formulation of Roy and Bagchi
- C. Brownian Oscillator Model
- D. Instantaneous Normal Mode Approach
- III. Polarization Relaxation in a Dipolar Liquid: Generalized Molecular Hydrodynamic Theory
 - A. Theoretical Formulation
 - 1. Molecular Hydrodynamic Theory and the Coupled Equations
 - 2. Free Energy Functional
 - 3. The General Solution
 - B. Calculation of the Dissipative Kernels
 - 1. Calculation of the Rotational Dissipative Kernel
 - a. Single Particle Limit of the Rotational Kernel
 - b. Collective Limit of the Rotational Kernel. The Inversion Procedure
 - 2. Calculation of the Translational Dissipative Kernel
- IV. Polar Solvation Dynamics: Microscopic Approach
 - A. Molecular Expression for Multipolar Solvation Energy
 - B. Ion Solvation Dynamics
 - C. Dipolar Solvation Dynamics
 - D. Details of the Method of Calculation
 - 1. Calculation of the Wavenumber-Dependent Direct Correlation Functions
 - 2. Calculation of the Generalized Rate of the Polarization Relaxation
 - 3. Calculation of the Solvent Dynamic Structure Factor
 - 4. Calculation of the Wavenumber-Dependent Orientational Self-Dynamic Structure Factor
 - E. Numerical Results for a Model Solvent: Ion Solvation Dynamics in a Stockmayer Liquid
- V. Solvation Dynamics in Water: Polarizability and Solvent Isotope Effects
 - A. Method of Calculation
 - 1. Calculation of the Wavenumber-Dependent Ion-Dipole Direct Correlation Function
 - 2. Calculation of the Static Orientational Correlations
 - 3. Calculation of the Rotational Dissipative Kernel
 - 4. Calculation of the Translational Dissipative Kernel
 - B. Calculation of Other Parameters Necessary in Calculation for Water
 - C. Parameters Required in the Calculation of the Isotope Effect
 - D. Results
 - 1. Ion Solvation Dynamics in Water: Theory Meets Experiment
 - 2. Role of Intermolecular Vibrations in the Solvation Dynamics of Water: Effects of Polarizability
 - 3. Solvation Dynamics in Heavy Water: Solvent Ispotope Effect
 - E. Conclusions
- VI. Ionic and Dipolar Solvation Dynamics in Monohydroxy Alcohols
 - A. Theoretical Formulation
 - B. Calculation Procedure
 - 1. Calculation of the Static Correlation Functions
 - 2. Calculation of the Memory Functions
 - C. Numerical Results: Ionic Solvation

- 1. Methanol
- 2. Ethanol
- 3. Propanol
- 4. Butanol
- D. Numerical Results: Dipolar Solvation
 - 1. Methanol
 - 2. Ethanol
 - 3. Propanol
- E. Can Nonpolar Solvation Dynamics Be Responsible for the Ultrafast Component Observed by Joo and Co-Workers?
- F. Discussion
- VII. Ion Solvation Dynamics in Slow, Viscous Liquids: Role of Solvent Structure and Dynamics
 - A. Theoretical Formulation
 - 1. Ion Solvation Dynamics
 - 2. Orientational Relaxation
 - B. Calculation Procedure
 - 1. Calculation of the Ion-Dipole Direct Correlation Function
 - 2. Calculation of the Solvent Static Correlation Functions
 - 3. Calculation of the Generalized Rate of Solvent Orientational Polarization Relaxation
 - C. Numerical Results and Discussion
 - D. Conclusions
- VIII. Ion Solvation Dynamics in Nonassociated Polar Solvents
 - A. Calculation Procedure
 - 1. Calculation of the Ion-Dipole Direct Correlation Function
 - 2. Calculation of the Static Orientational Correlations
 - 3. Calculation of the Rotational Memory Kernel
 - 4. Calculation of the Translational Memory Kernel
 - 5. Calculation of Other Parameters
 - B. Results
 - 1. Ion Solvation Dynamics in Acetonitrile
 - 2. Ion Solvation Dynamics in Acetone
 - 3. Ion Solvation Dynamics in Dimethyl Sulfoxide
 - C. Conclusions
 - IX. Origin of the Ultrafast Component in Solvent Response and the Validity of the Continuum Model
 - A. Plausible Explanations
 - 1. Extended Molecular Hydrodynamic Theory: Role of the Collective Solvent Polarization Mode
 - 2. Instantaneous Normal Mode Approach: Nonpolar, Nearest-Neighbor Solute-Solvent Binary Dynamics
 - 3. Competition between the Polar and the Nonpolar Solvent Responses
 - B. The Validity of the Continuum Model Description: Recent Works of Marcus and Co-Workers
 - X. Ion Solvation Dynamics in Supercritical Water
 - A. Calculation Procedure
 - 1. Calculation of the Static Correlation Functions
 - 2. Calculation of the Memory Kernels
 - B. Numerical Results

- C. Origin of the Slow Long-Time Decay Rate of the Simulated Solvation Energy Time Correlation Function
- D. Conclusions
- XI. Nonpolar Solvation Dynamics: Role of Binary Interaction in the Ultrafast Response of a Dense Liquid
 - A. Theoretical Details
 - B. Numerical Results: Significance of the Solute-Solvent Two-Particle Binary Dynamics
 - C. Conclusions
- XII. Vibrational Energy Relaxation
 - A. Calculation of the Frequency-Dependent Friction
 - 1. Microscopic Expression for Binary Friction
 - B. Vibrational Energy Relaxation: Role of Biphasic Frictional Response
 - C. Vibrational Relaxation at High Frequncy: Quantum Effects
 - D. Conclusions
- XIII. Vibrational Phase Relaxation in Liquids: Nonclassical Behavior Owing to Bimodal Friction
 - A. Background Information
 - B. Kubo-Oxtoby Theory
 - C. Mode-Coupling Theory Calculation of the Force-Force Time Correlation Function
 - D. Subquadratic Quantum Number Dependence of Overtone Dephasing
 - E. Vibrational Phase Relaxation Near the Gas-Liquid Critical Point
- XIV. Limiting Ionic Conductivity in Electrolyte Solutions: A Molecular Theory
 - A. Theoretical Formulation
 - 1. Calculation of the Local Friction
 - 2. Calculation of the Dielectric Friction
 - B. Calculation Procedure
 - 1. Calculation of the Wavenumber- and Frequency-Dependent Generalized Rate of Solvent Polarization Relaxation
 - a. Solvent Translational Friction
 - 2. Calculation of the Static, Orientational Correlation Functions
 - C. Numerical Calculations
 - 1. Relation Between the Ionic Conductivity and Solvation Dynamics
 - 2. Size Dependence of Dielectric Friction
 - D. Conclusions
- XV. Limiting Ionic Conductivity of Aqueous Electrolyte Solutions: Temperature Dependence and Solvent Isotope Effects
 - A. Calculation Procedure
 - 1. Calculation of Ion-Dipole Direct Correlation Function
 - 2. Calculation of the Wavenumber- and Frequency-Dependent Generalized Rate of Solvent Polarization Relaxation
 - a. Rotational Friction
 - b. Solvent Translational Friction
 - B. Numerical Results
 - 1. Temperature Dependence of the Limiting Ionic Conductivity in Water
 - 2. Origin of the Observed Temperature Dependence of Ionic Conductivity
 - 3. Solvent Isotope Effect: Limiting Ionic Conductivity in Heavy Water
 - C. Conclusions
- XVI. Ionic Mobility in Monohydroxy Alcohols

A. Calculation Procedure

- 1. Calculation of the Wavenumber- and Frequency-Dependent Generalized Rate of Solvent Polarization Relaxation
 - a. Rotational Kernel
 - b. Solvent Translational Friction
- 2. Calculation of the Static, Orientational Correlation Functions

B. Numerical Results

- 1. Methanol
- 2. Ethanol
- 3. Propanol
- C. Discussion

XVII. Microscopic Derivation of the Hubbard-Onsager Expression of Limiting Ionic Conductivity

- A. Strategy for Deriving Continuum Results from Molecular Theories
- B. The Microscopic Derivation
- C. Conclusions

XVIII. Dynamics of Solvation in Electrolyte Solutions

XIX. Dielectric Relaxation and Solvation Dynamics in Organized Assemblies

- A. Solvation Dynamics in the Cyclodextrin Cavity
 - 1. Experimental Observations
 - 2. Theoretical Approach
- B. Solvation Dynamics in Micellar Systems
- C. Dielectric Relaxation and Solvation Dynamics in Biological Water

XX. Future Problems

- A. Dielectric Relaxation and Solvation Dynamics in Organized Assemblies
- B. Effects of Ultrafast Nonpolar Solvent Response on Electron Transfer Reactions
- C. Dielectric Relaxation and Solvation Dynamics in Mixtures
- D. Concentration Dependence on Ionic Mobility
- E. Limiting Ionic Conductivity of Halide Anions
- F. Limiting Ionic Conductivity in Water-Alcohol Mixtures
- G. Viscosity of Aqueous Solutions of Strong Electrolytes
- H. Solubility and Solvation Dynamics in Supercritical Water
- I. Dynamic Response Functions from Nonlinear Optical Spectroscopy

Appendix A. Derivation of $F_{10}(t)$ and $F_{11}(t)$

Appendix B. Dynamic Structure Factor for Calculating S(q, t)

Appendix C. Calculation of $R_{tt}(t)$

Acknowledgments

SPATIAL PATTERNS AND SPATIOTEMPORAL DYNAMICS IN CHEMICAL SYSTEMS

A. DE WIT

Service de Chimie Physique, Centre for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Campus Plaine, 1050 Brussels, Belgium

CONTENTS

- I. Introduction
- II. The Turing Instability
- III. Experimental Background
 - A. Role of the Gel and the Color Indicator
 - B. Two-Dimensional Patterns
 - C. Ramps and Dimensionality of Patterns
 - D. Three-Dimensional Patterns
 - E. Turing-Hopf Interaction
 - F. New Systems
- IV. Pattern Selection Theory
 - A. Weakly Nonlinear Analysis
 - B. Degeneracies
 - C. Reaction-Diffusion Models vs Amplitude Equations
 - V. Turing Patterns
 - A. Reaction-Diffusion Models
 - B. Two-Dimensional Pattern Selection
 - 1. Standard Bifurcation Diagrams
 - 2. Re-entrant Hexagons
 - 3. Localized Structures in Subcritical Regimes
 - 4. Boundaries
 - 5. Long-Wavelength Instabilities and Phase Equations
 - C. Three-Dimensional Pattern Selection
 - 1. Bifurcation Diagrams
 - 2. Minimal Surfaces
- VI. Turing-Hopf Interaction
 - A. Interaction between Steady and Hopf Modes
 - 1. Mixed Modes

Advances in Chemical Physics, Volume 109, Edited by I. Prigogine and Stuart A. Rice ISBN 0-471-32920-7 © 1999 John Wiley & Sons, Inc.

- 2. Bistability and Localized Structures
- B. Subharmonic Instabilities
- C. Genericity
- D. Two-Dimensional Spatiotemporal Dynamics
- VII. Bistable Systems
 - A. Zero Mode
 - B. Morphologic Instabilities
- VIII. Conclusions and Perspectives

Acknowledgments