PREFACE xvii

ACKNOWLEDGMENTS xix

CHAPTER 1 ELECTROMAGNETIC THEORY 1

1.1	Maxwell's Equations 1
1.2	Volumetric Equivalence Principle for Penetrable Scatterers
1.3	General Description of a Scattering Problem 5
1.4	Source–Field Relationships in Homogeneous Space 6
1.5	Duality Relationships 10
1.6	Surface Equivalence Principle 10
1.7	Surface Integral Equations for Perfectly
	Conducting Scatterers 16
1.8	Volume Integral Equations for Penetrable Scatterers 18
1.9	Surface Integral Equations for Homogeneous Scatterers 19
1.10	Surface Integral Equation for an Aperture
	in a Conducting Plane 22
1.11	Scattering Cross Section Calculation
	for Two-Dimensional Problems 24
1.12	Scattering Cross Section Calculation
	for Three-Dimensional Problems 27
1.13	Application to Antenna Analysis 28
1.14	Summary 30
	References 30
	Problems 31

viii Contents

CHAPTER 2 INTEGRAL EQUATION METHODS FOR SCATTERING FROM INFINITE CYLINDERS 37

- 2.1 TM-Wave Scattering from Conducting Cylinders:EFIE Discretized with Pulse Basis and DeltaTesting Functions 37
- 2.2 TE-Wave Scattering from Conducting Cylinders:MFIE Discretized with Pulse Basis and DeltaTesting Functions 45
- 2.3 Limitations of Pulse Basis/Delta Testing Discretizations 50
- TE-Wave Scattering from Perfectly Conducting
 Strips or Cylinders: EFIE Discretized with Triangle
 Basis and Pulse Testing Functions 52
- 2.5 TM-Wave Scattering from Inhomogeneous Dielectric
 Cylinders: Volume EFIE Discretized with Pulse
 Basis and Delta Testing Functions 59
- 2.6 TE-Wave Scattering from Dielectric Cylinders: Volume EFIE Discretized with Pulse Basis and Delta Testing Functions 65
- TE-Wave Scattering from Inhomogeneous Dielectric
 Cylinders: Volume MFIE Discretized with Linear Pyramid
 Basis and Delta Testing Functions 70
- Scattering from Homogeneous Dielectric Cylinders: Surface Integral Equations Discretized with Pulse Basis and Delta Testing Functions 76
- 2.9 Integral Equations for Two-Dimensional Scatterers Having an Impedance Surface 80
- 2.10 Summary 85 References 85 Problems 86

CHAPTER 3 DIFFERENTIAL EQUATION METHODS FOR SCATTERING FROM INFINITE CYLINDERS 95

- 3.1 Weak Forms of the Scalar Helmholtz Equations 95
- 3.2 Incorporation of Perfectly Conducting Boundaries 98
- 3.3 Exact Near-Zone Radiation Condition on a Circular Boundary 100
- 3.4 Outward-Looking Formulation Combining the Scalar Helmholtz Equation with the Exact Radiation Boundary Condition 102
- 3.5 Example: TM-Wave Scattering from a Dielectric Cylinder 106

3.6	Scattering from Cylinders Containing Conductors 110
3.7	Evaluation of Volumetric Integrals for the Matrix Entries 112
3.8	Local Radiation Boundary Conditions on a Circular Surface: The Bayliss–Turkel Conditions 115
3.9	Outward-Looking Formulation Combining the Scalar Helmholtz Equation and the Second-Order Bayliss–Turkel RBC 120
3.10	Exact Near-Zone Radiation Boundary Conditions for Surfaces of General Shape 125
3.11	Connection between the Surface Integral and Eigenfunction RBCs 128
3.12	Inward-Looking Differential Equation Formulation: The Unimoment Method 130
3.13	Summary 135
	References 136
	Problems 137
OF L	ORITHMS FOR THE SOLUTION INEAR SYSTEMS OF EQUATIONS 143
4.1	Naive Gaussian Elimination 143
4.2	Pivoting 146
4.3	Condition Numbers and Error Propagation in the Solution of Linear Systems 146
4.4	Cholesky Decomposition for Complex-Symmetric Systems 149
4.5	Reordering Algorithms for Sparse Systems of Equations 150
4.6	Banded Storage for Gaussian Elimination 156
4.7	Variable-Bandwidth or Envelope Storage for Gaussian Elimination 156
4.8	Sparse Matrix Methods Employing Dynamic Storage Allocation 158
4.9	Frontal Algorithm for Gaussian Elimination 159
4.10	Iterative Methods for Matrix Solution 160
4.11	The Conjugate Gradient Algorithm for General Linear Systems 161
4.12	The Conjugate Gradient–Fast Fourier Transform (CG-FFT) Procedure 170
4.13	Fast Matrix–Vector Multiplication: An Introduction to the Fast Multipole Method 175
4.14	Preconditioning Strategies for Iterative Algorithms 178
4.15	Summary 179

CHAPTER 4

x Contents

References 180 Problems 184

CHAPTER 5 THE DISCRETIZATION PROCESS: BASIS/TESTING FUNCTIONS AND CONVERGENCE 187

	S/TESTING FUNCTIONS CONVERGENCE 187
5.1	Inner Product Spaces 187
5.2	The Method of Moments 190
5.3	Examples of Subsectional Basis Functions 192
5.4	Interpolation Error 197
5.5	Dispersion Analysis 198
5.6	Differentiability Constraints on Basis and Testing Functions 200
5.7	Eigenvalue Projection Theory 205
5.8	Classification of Operators for Several Canonical Equations 207
5.9	Convergence Arguments Based on Galerkin's Method 212
5.10	Convergence Arguments Based on Degenerate Kernel Analogs 213
5.11	Convergence Arguments Based on Projection Operators 217
5.12	The Stationary Character of Functionals Evaluated Using Numerical Solutions 219
5.13	Summary 224
	References 224
	Problems 226

CHAPTER 6 ALTERNATIVE SURFACE INTEGRAL EQUATION FORMULATIONS 233

- 6.1 Uniqueness of Solutions to the Exterior Surface EFIE and MFIE 233
- 6.2 The Combined-Field Integral Equation for Scattering from Perfectly Conducting Cylinders 240
- 6.3 The Combined-Source Integral Equation for Scattering from Perfectly Conducting Cylinders 246
- 6.4 The Augmented-Field Formulation 248
- 6.5 Overspecification of the Original EFIE or MFIE at Interior Points 248
- 6.6 Dual-Surface Integral Equations 250
- 6.7 Complexification of the Wavenumber 252
- 6.8 Determination of the Cutoff Frequencies and Propagating Modes of Waveguides of Arbitrary Shape Using Surface Integral Equations 252

6.9	Uniqueness Difficulties Associated with Differential Equation Formulations 254
6.10	Summary 255
	References 256
	Problems 257
TWC	P GRATINGS AND OTHER D-DIMENSIONAL STRUCTURES H ONE-DIMENSIONAL PERIODICITY 261
7.1	Fourier Analysis of Periodic Functions 261
7.2	Floquet Harmonics 264
7.3	TM Scattering from a Conducting Strip Grating: EFIE Discretized with Pulse Basis Functions and Delta Testing Functions 266
7.4	Simple Acceleration Procedures for the Green's Function 269
7.5	Alternate Acceleration Procedures 272
7.6	Blind Angles 277
7.7	TE Scattering from a Conducting Strip Grating Backed by a Dielectric Slab: EFIE Formulation 277
7.8	Aperture Formulation for TM Scattering from a Conducting Strip Grating 281
7.9	Scattering Matrix Analysis of Cascaded Periodic Surfaces 282
7.10	TM Scattering from a Half-Space Having a General Periodic Surface: EFIE Discretized with Pulse Basis Functions and Delta Testing Functions 284
7.11	TM Scattering from an Inhomogeneous Grating: Outward-Looking Formulation with an Integral Equation RBC 289
7.12	Summary 296
	References 296

CHAPTER 8 THREE-DIMENSIONAL PROBLEMS WITH TRANSLATIONAL OR ROTATIONAL SYMMETRY 301

Problems 297

CHAPTER 7

- 8.1 Scattering from Infinite Cylinders Illuminated by Finite Sources 302
- 8.2 Oblique TM-Wave Scattering from Infinite
 Conducting Cylinders: CFIE Discretized with Pulse
 Basis Functions and Delta Testing Functions 305

xii Contents

8.3	Oblique TE-Wave Scattering from Infinite Conducting Cylinders: Augmented MFIE Discretized with Pulse Basis Functions and Delta Testing Functions 307
8.4	Application: Mutual Admittance between Slot Antennas 310
8.5	Oblique Scattering from Inhomogeneous Cylinders: Volume Integral Equation Formulation 313
8.6	Oblique Scattering from Inhomogeneous Cylinders: Scalar Differential Equation Formulation 317
8.7	Scattering from a Finite-Length, Hollow Conducting Right-Circular Cylinder: The Body-of-Revolution EFIE Formulation 323
8.8	Differential Equation Formulation for Axisymmetric Scatterers 331
8.9	Summary 333
	References 333
	Problems 334
FOF	SSECTIONAL BASIS FUNCTIONS R MULTIDIMENSIONAL D VECTOR PROBLEMS 337
9.1	Higher Order Lagrangian Basis Functions on Triangles 338
9.2	Example: Use of Higher Order Basis Functions with the Two-Dimensional Scalar Helmholtz Equation 342
9.3	Lagrangian Basis Functions for Rectangular and Quadrilateral Cells 349
9.4	Scalar Basis Functions for Two-Dimensional Cells with Curved Sides 354
9.5	Discretization of Two-Dimensional Surface Integral Equations Using an Isoparametric Quadratic Representation 357
9.6	Scalar Lagrangian Functions in Three Dimensions 359
9.7	Scalar Lagrangian Discretization of the Vector Helmholtz Equation for Cavities: Spurious Eigenvalues

and Other Difficulties 361

and Rectangular Cells 371

Triangular Cells 367

Polynomial-Complete Vector Basis Functions that Impose Tangential Continuity but not Normal Continuity between

Mixed-Order Vector Basis Functions that Impose Tangential but not Normal Continuity for Triangular

9.8

9.9

CHAPTER 9

9.10	TE Scattering Using the Vector Helmholtz Equation
	with CT/LN and LT/QN Vector Basis Functions Defined
	on Triangular Cells 382

- 9.11 Analysis of Dielectric-Loaded Waveguides Using Curl-Conforming Vector Basis Functions 388
- 9.12 Mixed-Order Curl-Conforming Vector Basis Functions for Tetrahedral and Hexahedral Cells 392
- 9.13 Divergence-Conforming Vector Basis Functions for Discretizations of the EFIE 395
- 9.14 Mapping Vector Basis Functions to Curvilinear Cells in Two and Three Dimensions 399
- 9.15 Summary 406 References 406 Problems 408

CHAPTER 10 INTEGRAL EQUATION METHODS FOR THREE-DIMENSIONAL BODIES 415

- Scattering from Flat Perfectly Conducting Plates:
 EFIE Discretized with CN/LT Rooftop Basis Functions
 Defined on Rectangular Cells 416
- Scattering from Perfectly Conducting Bodies:
 EFIE Discretized with CN/LT Triangular-Cell Rooftop
 Basis Functions 425
- 10.3 Scattering from Perfectly Conducting Bodies: MFIE Discretized with Triangular-Cell CN/LT Basis Functions 428
- 10.4 Scattering from Perfectly Conducting Bodies: CFIE Discretized with Triangular-Cell CN/LT Basis Functions 430
- 10.5 Performance of the CFIE with LN/QT Basis Functions and Curved Patches 430
- 10.6 Treatment of Electrically Small Scatterers Using Surface Integral Equations 433
- 10.7 Scattering from Homogeneous Dielectric Bodies: CFIE Discretized with Triangular-Cell CN/LT Basis Functions 435
- 10.8 Radiation and Scattering from Thin Wires 440
- 10.9 Scattering from Planar Periodic Geometries 443
- 10.10 Analysis of Microstrip Structures 445
- 10.11 A Brief Survey of Volume Integral Formulations for Heterogeneous Dielectric Bodies 450
- 10.12 Summary 452

xiv

References 452 Problems 455

CHAPTER 11 FREQUENCY-DOMAIN DIFFERENTIAL EQUATION FORMULATIONS FOR OPEN THREE-DIMENSIONAL PROBLEMS 461

11.1	Weak Vector Helmholtz Equation and Boundary Conditions 461
11.2	Discretization using CT/LN and LT/QN Functions for Three-Dimensional Cavities 463
11.3	Eigenfunction RBC for Spherical Boundary Shapes 469
11.4	Surface Integral Equation RBC for General Boundary Shapes 470
11.5	Outward-Looking versus Inward-Looking Formulations 473
11.6	Integral Equation RBC for Axisymmetric Boundary Shapes 475
11.7	Local RBCs for Spherical Boundaries 476
11.8	Local RBCs for General Three-Dimensional Boundary Shapes 481
11.9	RBCs Based on Fictitious Absorbers 483
11.10	Vector Formulation for Axisymmetric Heterogeneous Scatterers 484
11.11	Alternative Formulations for Three-Dimensional Scattering 487
11.12	Summary 488
	References 489

CHAPTER 12 FINITE-DIFFERENCE TIME-DOMAIN METHODS ON ORTHOGONAL MESHES 495

Problems 492

METH	ODS ON ORTHOGONAL MESHES 495
12.1	Maxwell's Equations in the Time Domain 496
12.2	Centered Finite-Difference Approximations 496
12.3	FDTD Spatial Discretization 497
12.4	FDTD Time Discretization 499
12.5	Divergence Conservation in the FDTD 500
12.6	Extension to Three Dimensions 501
12.7	Other Coordinate Systems 501
12.8	Numerical Analysis of the FDTD Algorithm:

Stability, Dispersion, and Anisotropy 502

Contents xv

	12.9	Treating Lossy/Conductive Media 506
	12.10	Frequency-Dependent Media 507
	12.11	Simple Boundary and Interface Conditions 509
	12.12	Absorbing Boundary Conditions 510
	12.13	Internal and External Sources 517
	12.14	Far-Field Projections 518
	12.15	Extensions to the Orthogonal Mesh FDTD Method 520
		References 520
		Problems 522
APPENDIX A	QUA	DRATURE 525
	A. 1	Romberg Integration 525
	A.2	Gaussian Quadrature 527
	A.3	Gauss-Kronrod Rules 528
	A.4	Incorporation of Logarithmic Singularities 528
	A.5	Gaussian Quadrature for Triangles 529
	A.6	Gaussian Quadrature for Tetrahedrons 530
		References 530
APPENDIX B	FOR	RCE-FIELD RELATIONSHIPS CYLINDERS ILLUMINATED N OBLIQUELY INCIDENT FIELD 531
APPENDIX B APPENDIX C	FOR FOR FROM	CYLINDERS ILLUMINATED
	FOR FOR FROM	CYLINDERS ILLUMINATED N OBLIQUELY INCIDENT FIELD 531 FRAN CODES FOR TM SCATTERING M PERFECT ELECTRIC
	FOR FOR FROI CON	CYLINDERS ILLUMINATED N OBLIQUELY INCIDENT FIELD 531 FRAN CODES FOR TM SCATTERING M PERFECT ELECTRIC DUCTING CYLINDERS 537
	FOR FROM CON	CYLINDERS ILLUMINATED N OBLIQUELY INCIDENT FIELD 531 FRAN CODES FOR TM SCATTERING M PERFECT ELECTRIC DUCTING CYLINDERS 537 Implementation 1: Single-Point Approximation 537
APPENDIX C	FOR BY A FOR FROM CON C.1 C.2 C.3	CYLINDERS ILLUMINATED N OBLIQUELY INCIDENT FIELD 531 FRAN CODES FOR TM SCATTERING M PERFECT ELECTRIC DUCTING CYLINDERS 537 Implementation 1: Single-Point Approximation 537 Implementation 2: Romberg Quadrature 544
APPENDIX C	FOR BY A FOR FROM CON C.1 C.2 C.3	CYLINDERS ILLUMINATED N OBLIQUELY INCIDENT FIELD 531 FRAN CODES FOR TM SCATTERING M PERFECT ELECTRIC DUCTING CYLINDERS 537 Implementation 1: Single-Point Approximation 537 Implementation 2: Romberg Quadrature 544 Implementation 3: Generalized Gaussian Quadrature 548 ITIONAL SOFTWARE AVAILABLE