Contents

CONTRIBUTORS PREFACE ix xi

1

The Process of Technology Transfer and Commercialization Essay I ACHIEVING SUCCESSFUL TECHNOLOGY TRANSFER, AARON J. GELLMAN 1 ESSAY II DIFFICULTIES IN TECHNOLOGY TRANSFER, 7 Emmanuel P. Papadakis ESSAY III COMMERCIALIZATION: FROM BASIC RESEARCH TO SALES TO PROFITS, NEIL J. GOLDFINE 15 ESSAY IV PERSPECTIVES ON TECHNOLOGY TRANSFER AND NDT MARKETS, STEPHEN R. RINGLEE 20 Essay V TEAMING - A SOLUTION TO THE PROBLEM OF INTEGRATING SOFT SKILLS AND INDUSTRIAL INTERACTION INTO ENGINEERING CURRICULA, WILLIAM LORD, SATISH UDPA, AND ROBERT S. HARRIS 24 ESSAY VI INNOVATIVE TECHNOLOGY TRANSFER INITIATIVES, ARTHUR BALLATO AND RICHARD STERN 33

2

Fabrication and Characterization of Transducers

Emmanuel P. Papadakis, Clyde G. Oakley, Alan Selfridge, and Bruce Maxfield

I.	INTRODUCTION	44
II.	MONOLITHIC PIEZOELECTRIC PLATE TRANSDUCERS	45
III.	Composite Transducers	76

V

Contents

IV.	PVDF FILM TRANSDUCERS	107
V.	Electromagnetic Acoustic Transducers (EMATs)	116
VI.	SUMMARY	129

3

Surface Acoustic Wave Technology: Macrosuccess through Microseisms

FRED S. HICKERNELL

38 41 45 48
41 45 48
45 48
48
56
70
74
83
86
86
87
89
90
94
97
03
04
06

4

Frequency Control Devices

JOHN R. VIG AND ARTHUR BALLATO

I.	INTRODUCTION	209
II.	Applications	210
III.	FREQUENCY CONTROL DEVICE FUNDAMENTALS	222
IV.	Related Devices	267
V.	For Further Reading	269
References		269

vi

Industrial Ultrasonic Imaging/Microscopy

ROBERT S. GILMORE

I.	SUMMARY	275
II.	INTRODUCTION AND HISTORICAL REVIEW	277
III.	LIST OF SYMBOLS AND ABBREVIATIONS	288
IV.	DESCRIPTION AND THEORY OF ACOUSTIC IMAGING/MICROSCOPY	289
V.	ROLE OF IMAGED MATERIAL: PERMITTED RESOLUTION	295
VI.	APPLICATIONS	323
VII.	CONCLUSIONS AND FUTURE WORK	343
ACKN	NOWLEDGMENTS	344
Refe	RENCES	344

6

Research Instruments and Systems

BRUCE B. CHICK

I.	HISTORICAL BACKGROUND	347
II.	ATTENUATION MEASUREMENTS	348
III.	VELOCITY MEASUREMENTS	348
IV.	ATTENUATION AND VELOCITY MEASUREMENTS	351
V.	Nonlinear Measurements	355
VI.	Thin Film Measurements	357
VII.	ACOUSTIC EMISSION MEASUREMENTS	358
References		361

SUBJECT INDEX	363
	505