

CONTENTS

THE THERMODYNAMIC FORCES IN AN INTERFACE	1
By Ronald Lovett and Marc Baus	
Molecular Self-Assembly into Crystals at Air-Liquid Interfaces	39
By Isabelle Weissbuch, Ronit Popovitz-Biro, Meir Lahav, Leslie Leiserowitz, Kristian Kjaer, and Jens Als-Nielsen	
Some Applications of Fractional Calculus to Polymer Science	121
By Jack F. Douglas	
THE NEWTONIAN VISCOSITY OF A MODERATELY DENSE SUSPENSION	193
By Eligiusz Wajnryb and John S. Dahler	
A Review of Foam Drainage	315
By D. Weaire, S. Hutzler, G. Verbist, and E. Peters	
Author Index	375
Subject Index	383

THE THERMODYNAMIC FORCES IN AN INTERFACE

RONALD LOVETT

Department of Chemistry, Washington University, St. Louis, MO 63130

MARC BAUS

Faculté des Sciences, C.P. 231, Université Libre de Bruxelles, B-1050 Brussels, Belgium

CONTENTS

- I. Introduction
- II. The Force Problem
- III. The Solution
- IV. Density Functional Theory
- V. Thermodynamics
- VI. Molecular Realizations
- VII. The Cylindrical Interface
- VIII. Young's Model and the Surface Tension
 - IX. The Free Energy Density
 - X. The Stress Tensor Exposed
 - XI. Conclusions

Acknowledgments

MOLECULAR SELF-ASSEMBLY INTO CRYSTALS AT AIR-LIQUID INTERFACES

ISABELLE WEISSBUCH, RONIT POPOVITZ-BIRO, MEIR LAHAV, AND LESLIE LEISEROWITZ

Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot, 76100 Israel

KRISTIAN KJAER

Department of Solid State Physics, Risø National Laboratory, DK-4000 Roskilde, Denmark

JENS ALS-NIELSEN

H.C. Ørsted Laboratory, Niels Bohr Institute, DK2100 Copenhagen, Denmark

CONTENTS

- I. Introduction
- II. Packing properties of self-assembled crystalline monolayers
 - A. Introduction
 - B. Crystalline Self-Assembly of Amphiphilic Molecules
 - C. Correlation between Crystal Domain Anisotropy and Lattice Energy
- III. Effect of solute, solvent, and ions on growth, dissolution and structure of amphiphilic monolayers
 - A. Effect of Glycine and β -Alanine Solutes in the Aqueous Subphase on α -Amino Acid Monolayers
 - B. Effect of Formamide and Formic Acid Cosolvents on Crystallinity and Structure of Amphiphilic Monolayers
 - C. Ion Binding and Growth of Amphiphilic Monolayers
- IV. Crystalline multilayers of chain-like molecules on Liquid Surfaces

Advances in Chemical Physics, Volume 102, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-19144-2 © 1997 John Wiley & Sons, Inc.

- A. Aliphatic Primary Amides on Water, Formamide, and Water-Formamide Mixtures
- B. Aliphatic Secondary Amides on Formamide and Water-Formamide Mixtures
- C. Direction of Interlayer Growth of Primary and Secondary Aliphatic Amides at the Air-Formamide Interface
- D. Multilayer Formation of Bolaform Amphiphiles on Water
- E. Self-Assembled Crystalline Films of n-Alkanes on Water
- V. Tailor-made surfaces composed of amphiphilic monolayers for promotion of crystal nucleation
 - A. Introduction
 - B. Crystal Nucleation of 4-Methoxycinnamic Acid at the Air-Solution Interface
 - C. Transfer of Structural Information from α-Amino Acid Monolayers to Underlying Nucleated Crystals of α-Glycine
 - D. Two-Dimensional Crystals of Heterochiral Arrangement from Racemic α-Amino Acid Amphiphiles on Aqueous Solutions
 - E. Spontaneous Separation of Racemic Mixtures of α-Amino Acid Monolayers into Enantiomorphous Domains
 - F. Crystallization of NaCl Under Amphiphilic Monolayers
 - G. Oriented Nucleation of 4-Hydroxybenzoic Acid Monohydrate
 - H. Structured Surfaces of Mixed Monolayers for Induced Three-Dimensional Crystallization
 - I. Induced Nucleation of Ice by Monolayers of Long-Chain Alcohols

VI. Conclusions

Appendix

SOME APPLICATIONS OF FRACTIONAL CALCULUS TO POLYMER SCIENCE

JACK F. DOUGLAS

Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899

CONTENTS

- I. Introduction
- II. Path-Integration and Fractional Calculus
 - A. The Wiener Path-Integral Model of Flexible Polymers
 - B. Fractional Calculus Treatment of Surface-Interacting Polymers
- III. Translational Friction and Capacity of Polymer Chains
- IV. Virial Coefficients, the Wiener Sausage, and Shape Recognition
- V. Conclusion.

Appendix A. Stable Processes and Subordination

Appendix B. Smoothing and Mechanical Similarity

Acknowledgements

THE NEWTONIAN VISCOSITY OF A MODERATELY DENSE SUSPENSION

ELIGIUSZ WAJNRYB* AND JOHN S. DAHLER

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455

CONTENTS

- I. Introduction
 - A. Synopsis of the Theory
- II. The Formal Theory
 - A. Friction and Mobility Tensors
 - B. The Smoluchowski Equation
 - C. The Construction of $\langle F \rangle$
 - D. Cluster, Virial Expansion of the Operator B
- III. The First-Order Viscosity Contribution, η_1
 - A. Spherically Symmetric Particles
 - B. Axisymmetric Particles
- IV. The Second-Order Viscosity Contribution, η_2
 - A. The Hydrodynamic Contributions $B^{(2)H}$ and η_2^H
 - B. The Point Stresslet Model
 - C. The Brownian-Interactional Contributions $B^{(2)B}$ and η_2^B
 - V. The Third-Order Viscosity Contribution, η_3
 - A. The Viscosity Contribution, $\eta_3^{(2)}$
 - B. The Viscosity Contribution, $\eta_3^{(3)}$
 - C. The Coefficient η_3^H for the Point Stresslet Model
- VI. Numerical Procedures and Results
 - A. The Coefficient b_2^H
 - B. The Coefficient b_2^B
 - 1. Stick Boundary Conditions (s = 0 and p = 0)
 - 2. Mixed-Boundary Conditions $(0 \le s \le \frac{1}{3})$ [Fluid Droplet Model $(0 \le p \le 1)$]
 - 3. Numerical Calculation of b_2^B
 - C. Sticky Spheres with Stick Boundary Conditions
- VII. Summary and Closing Remarks
- * Permanent address: Institute of Fundamental Technological Research, Polish Academy of Sciences, Świętokrzyska 21, PL-00-049 Warsaw, Poland.

Advances in Chemical Physics, Volume 102, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-19144-2 © 1997 John Wiley & Sons, Inc.

Acknowledgments

Appendix A. Formulas for the Many-Body Mobility Tensors

Appendix B. The Case of Spherical Solute Particles

1. The Single-Particle Smoluchowski Equation

2. The Two-Particle Smoluchowski Equation

3. The Three-Particle Smoluchowski Equation

Appendix C. The Coefficients $\mu^{ss, j}$ of Eq. (3.48)

1. Lemma

2. Proof of Lemma

3. Application of the Lemma

Appendix D. An Identity Connected with η_1^B

Appendix E. Two Integrals of the Oseen Tensor

Appendix F. Existence of the Viscosity Contribution $\eta_3^{(3)H}$

Appendix G. Series Expansions of Mobility Matrices

A REVIEW OF FOAM DRAINAGE

D. WEAIRE AND S. HUTZLER

Physics Department, Trinity College, Dublin, Ireland

G. VERBIST AND E. PETERS*

Shell Research and Technology Centre, Amsterdam, 1030 BN Amsterdam, The Netherlands

CONTENTS

- I. Introduction
 - A. Notation
- II. Foam Structure
- III. Foam Equilibrium Under Gravity
- IV. Foam Drainage: History
 - A. Early Contribution
 - B. Kraynik's Solution
 - C. Profile Measurements
 - D. Further Elaboration of the Theory
- V. Elementary Experimental Observations of Forced Drainage
- VI. Various Experimental Methods
 - A. Segmented Measurements of Capacitance and Resistance
 - 1. Alternating Current Capacitance Measurement
 - 2. Conductance Measurement
 - B. Magnetic Resonance Imaging
 - C. Optical Glass Fiber Probe Method
- VII. The Foam Drainage Equation
- VIII. Solutions of the Foam Drainage Equation
 - A. Equilibrium
 - B. Steady Drainage
 - C. Solitary Wave: Wetting of a Dry Foam
 - * Present address: Laboratory of Aero and Hydrodynamics, TU Delft, The Netherlands.

Advances in Chemical Physics, Volume 102, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-19144-2 © 1997 John Wiley & Sons, Inc.

- D. Solitary Wave on an Already Wetted Foam
- E. Reduction to First Order, Pulses, and Free Drainage
 - 1. Pulses
 - 2. Free Drainage
- IX. The Theory of Solitary Waves
- X. Quantitative Comparison with Experiments
 - A. Formula for the Liquid Fraction
 - B. Forced Drainage
 - C. Free Drainage
 - D. Pulsed Drainage
 - E. Effective Viscosity
 - F. Widths of Wavefronts
 - G. Double Waves
- XI. Ongoing Experimental Investigation
- XII. Conclusion
 - A. Outstanding Issues
 - B. Potts Model Simulation
 - C. Future Work

Acknowledgements

