Contents | Contributors | vii | |--|--| | Preface | ix | | Buckling Analysis of Elastic Structures: A Computational Approach | | | Eduard Riks | | | I. Introduction II. Basics, the Geometrical Point of View III. Basics, the Stability Point of View IV. Computations V. Examples and Conclusion
References | 2
6
22
40
61
72 | | Computational Mechanics for Metal Deformation Processes
Using Polycrystal Plasticity | | | Paul R. Dawson and Esteban B. Marin | | | I. Introduction II. Orientations and Orientation Distributions III. Evolution of Texture and Strength IV. Field Equations for Deformation V. Computing the Deformation by Using the Finite-Element Method VI. Application to Forming Processes VII. Studies of Microstructure VIII. Summary IX. Notation X. Appendix: Matrix Representations Acknowledgments References | 78
81
88
99
113
121
133
152
157
161
162
163 | | Nonlinear Composites | | | Pedro Ponte Castañeda and Pierre Suquet | | | I. Introduction II. Effective Behavior and Potentials III. Variational Methods Based on a Homogeneous Reference Medium IV. Variational Methods Based on a Linear Comparison Composite | 172
175
187
192 | vi Contents | V. A Second-Order Theory VI. A Selection of Results for Linear Composites VII. Applications to Nonlinear Composites and Discussion VIII. Concluding Remarks IX. Appendices Acknowledgments References | 216
228
237
280
281
295
295 | |--|--| | The Mathematical Foundation of Plasticity Theory | | | Wei H. Yang | | | Abstract I. Introduction II. Minkowski Norms and Hölder Inequality III. Generalized Hölder Inequality IV. Constructing the Dual Norm V. Application to Plasticity VI. A Duality Theorem for Plane Stress Problems References | 303
304
307
308
309
311
313
315 | | Forced Generation of Solitary-Like Waves Related t
Boundary Layers | o Unstable | | Oleg S. Ryzhov and Elena V. Bogdanova-Ryzhova | | | I. Introduction: Historical Perspective II. The Triple Deck III. The BDA System IV. The KdV System V. Solitons and the Onset of Random Disturbances
Acknowledgments
References | 318
326
335
376
403
413 | | AUTHOR INDEX
SUBJECT INDEX | 419
427 |