

CONTENTS

Opening Remarks	xxxi
J. Solvay	
FEMTOCHEMISTRY: FROM ISOLATED MOLECULES TO CLUSTERS	
Femtochemistry: Chemical Reaction Dynamics and Their Control	3
A. H. Zewail Discussion on the Report by A. H. Zewail	
COHERENT CONTROL WITH FEMTOSECOND LASER PULSES	47
T. Baumert, J. Helbing, and G. Gerber Discussion on the Report by G. Gerber	
GENERAL DISCUSSION ON FEMTOCHEMISTRY: FROM ISOLATED MOLECULES TO CLUSTERS	83
FEMTOCHEMISTRY: FROM CLUSTERS TO SOLUTIONS	
Size-Dependent Ultrafast Relaxation Phenomena in Metal Clusters	101
R. S. Berry, V. Bonačić-Koutecký, J. Gaus, Th. Leisner, H. Ruppe, S. Rutz, E. Schreiber, St. Vajda, S. Wolf, L. Wöste, J. Manz, B. Reischl-Lenz, and R. de Vivie-Riedle Discussion on the Report by L. Wöste	
FEMTOSECOND CHEMICAL DYNAMICS IN CONDENSED PHASES	141
G. R. Fleming, T. Joo, and M. Cho Discussion on the Report by G. R. Fleming	
FEMTOSECOND LASER CONTROL OF ELECTRON BEAMS FOR ULTRAFAST DIFFRACTION	185
V. S. Letokhov Discussion on the Communication by V. S. Letokhov	
	XXV

GENERAL DISCUSSION ON FEMTOCHEMISTRY: FROM CLUSTERS TO SOLUTIONS	193
LASER CONTROL OF CHEMICAL REACTIONS	
Perspectives on the Control of Quantum Many-Body Dynamics: Application to Chemical Reactions	213
S. A. Rice Discussion on the Report by S. A. Rice	
EXPERIMENTAL OBSERVATION OF LASER CONTROL: ELECTRONIC BRANCHING IN THE PHOTODISSOCIATION OF Na ₂	285
A. Shnitman, I. Sofer, I. Golub, A. Yogev, M. Shapiro, Z. Chen, and P. Brumer Discussion on the Communication by M. Shapiro	
COHERENT CONTROL OF BIMOLECULAR SCATTERING	295
P. Brumer and M. Shapiro	
LASER HEATING, COOLING, AND TRANSPARENCY OF INTERNAL DEGREES OF FREEDOM OF MOLECULES	301
D. J. Tannor, R. Kosloff, and A. Bartana Discussion on the Communication by D. J. Tannor	
RAMIFICATIONS OF FEEDBACK FOR CONTROL OF QUANTUM DYNAMICS	315
H. Rabitz Discussion on the Communication by H. Rabitz	
THEORY OF LASER CONTROL OF VIBRATIONAL TRANSITIONS AND CHEMICAL REACTIONS BY ULTRASHORT INFRARED LASER PULSES	327
M. V. Korolkov, J. Manz, and G. K. Paramonov Discussion on the Communication by J. Manz	
TIME-FREQUENCY AND COORDINATE-MOMENTUM WIGNER WAVEPACKETS IN NONLINEAR SPECTROSCOPY	345
S. Mukamel, C. Ciordas-Ciurdariu, and V. Khidekel	
GENERAL DISCUSSION ON LASER CONTROL OF CHEMICAL REACTIONS	373

CONTENTS	xxvii
Intramolecular Dynamics	
SOLVENT DYNAMICS AND RRKM THEORY OF CLUSTERS	391
R. A. Marcus Discussion on the Report by R. A. Marcus	
HIGH-RESOLUTION SPECTROSCOPY AND INTRAMOLECULAR DYNAMICS	409
H. J. Neusser and R. Neuhauser Discussion on the Report by H. J. Neusser	
GENERAL DISCUSSION ON INTRAMOLECULAR DYNAMICS	449
REGULAR AND IRREGULAR FEATURES IN UNIMOLECULAR SPECTRA AND DYNAMICS	
INTRAMOLECULAR DYNAMICS IN THE FREQUENCY DOMAIN	463
R. W. Field, J. P. O'Brien, M. P. Jacobson, S. A. B. Solina, W. F. Polik, and H. Ishikawa	
EMERGENCE OF CLASSICAL PERIODIC ORBITS AND CHAOS IN INTRAMOLECULAR AND DISSOCIATION DYNAMICS	491
P. Gaspard and I. Burghardt	
GENERAL DISCUSSION ON REGULAR AND IRREGULAR FEATURES IN UNIMOLECULAR SPECTRA AND DYNAMICS	583
MOLECULAR RYDBERG STATES AND ZEKE SPECTROSCOPY	
ZEKE Spectroscopy	607
E. W. Schlag Discussion on the Report by E. W. Schlag	
SEPARATION OF TIME SCALES IN THE DYNAMICS OF HIGH MOLECULAR RYDBERG STATES	625
R. D. Levine	
GENERAL DISCUSSION ON MOLECULAR RYDBERG STATES AND ZEKE SPECTROSCOPY: PART I	647

From Rydberg State Dynamics to Ion-Molecule Reactions using ZEKE Spectroscopy	667
T. P. Softley, S. R. Mackenzie, F. Merkt, and D. Rolland Discussion on the Report by T. P. Softley	
QUANTUM DEFECT THEORY OF THE DYNAMICS OF MOLECULAR RYDBERG STATES	701
Ch. Jungen Discussion on the Report by Ch. Jungen	
Subpicosecond Study of Bubble Formation upon Rydberg State Excitation in Condensed Rare Gases	711
MT. Portella-Oberli, C. Jeannin, and M. Chergui Discussion on the Communication by M. Chergui	
GENERAL DISCUSSION ON MOLECULAR RYDBERG STATES AND ZEKE SPECTROSCOPY: PART II	719
TRANSITION-STATE SPECTROSCOPY AND PHOTODISSOCIATION	
PHOTODISSOCIATION SPECTROSCOPY AND DYNAMICS OF THE VINOXY (CH ₂ CHO) RADICAL	729
D. L. Osborn, H. Choi, and D. M. Neumark Discussion on the Report by D. M. Neumark	
RESONANCES IN UNIMOLECULAR DISSOCIATION: FROM MODE-SPECIFIC TO STATISTICAL BEHAVIOR	745
R. Schinke, HM. Keller, H. Flöthmann, M. Stumpf, C. Beck, D. H. Mordaunt, and A. J. Dobbyn Discussion on the Report by R. Schinke	
Photodissociating Small Polyatomic Molecules in the VUV Region: Resonances in the $^1\Sigma^+-^1\Sigma^+$ Band of OCS	789
K. Yamanouchi, K. Ohde, and A. Hishikawa Discussion on the Communication by K. Yamanouchi	
Phase and Amplitude Imaging of Evolving Wavepackets by Spectroscopic Means	799
M. Shapiro Discussion on the Communication by M. Shapiro	

CONTENTS	xxix
GENERAL DISCUSSION ON TRANSITION-STATE SPECTROSCOPY AND PHOTODISSOCIATION	809
REACTION RATE THEORIES	
RECENT ADVANCES IN STATISTICAL ADIABATIC CHANNEL CALCULATIONS OF STATE-SPECIFIC DISSOCIATION DYNAMICS	819
J. Troe Discussion on the Report by J. Troe	
QUANTUM AND SEMICLASSICAL THEORIES OF CHEMICAL REACTION RATES	853
W. H. Miller Discussion on the Report by W. H. Miller	
FEMTOSPECTROCHEMISTRY: NOVEL POSSIBILITIES WITH THREE-DIMENSIONAL (SPACE-TIME) RESOLUTION	873
V. S. Letokhov Discussion on the Communication by V. S. Letokhov	
ACADEMIC SESSION AT THE CASTLE OF LAEKEN: PRESENTATION TO KING ALBERT II	889
Modern Photochemistry	889
S. A. Rice	
FEMTOCHEMISTRY	892
A. H. Zewail	
CONCLUDING REMARKS	893
S. A. Rice and V. S. Letokhov	
AUTHOR INDEX	899
Subject Index	927

FEMTOCHEMISTRY: CHEMICAL REACTION DYNAMICS AND THEIR CONTROL

A. H. ZEWAIL

Arthur Amos Noyes Laboratory of Chemical Physics California Institute of Technology Pasadena, California

CONTENTS

- I. Introductory Remarks
- II. Concept of Coherence and the Evolution to Femtochemistry
 - A. Coherence and Dephasing
 - B. Coherence Control by Phase-Coherent Pulses
 - C. Coherence in the States of Isolated Molecules: IVR
 - D. Coherence in Orientation: Molecular Structures
 - E. Coherence in Reactions: Wavepackets and Nuclear Motions
 - F. Coherence in Solvation: Clusters and Dense Fluids
 - G. Coherence Control of Wavepackets: Reactive and Nonreactive Systems
 - H. Coherence in Electron Diffraction: Complex Molecular Structures
- III. Prototype Systems: Uni- and Bimolecular Reactions
 - A. Resonances in Unimolecular Reactions
 - B. Barrier Reactions: Saddle-Point Transition State
 - C. Bimolecular Reactions: Ground-State Dynamics
 - D. Complex Organic Reactions
 - E. Electron Transfer Reactions
 - F. Tautomerization Reactions of DNA Models
- IV. Scope of Reactions Studied
- V. Concluding Remarks

Bibliography

References

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard,

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

ISBN 0-471-18048-3 © 1997 John Wiley & Sons, Inc.

COHERENT CONTROL WITH FEMTOSECOND LASER PULSES

T. BAUMERT, J. HELBING, and G. GERBER*

Physikalisches Institut Universität Würzburg Würzburg, Germany

CONTENTS

- I. Introduction
- II. Experiment
- III. Pump-Probe Schemes
- IV. Phase-Sensitive Pump-Probe Experiments
- V. Coherent Control with Phase-Modulated Femtosecond Laser Pulses
- VI. Influence of Laser Pulse Duration
- VII. Coherent Control with Intense Laser Pulses
- VIII. Conclusion

SIZE-DEPENDENT ULTRAFAST RELAXATION PHENOMENA IN METAL CLUSTERS

R. S. BERRY

Department of Chemistry and the James Franck Institute
The University of Chicago
Chicago, Illinois

V. BONAČIĆ-KOUTECKÝ and J. GAUS

Walter Nernst-Institut Humboldt-Universität zu Berlin Berlin, Germany

Th. LEISNER, J. MANZ, B. REISCHL-LENZ, H. RUPPE, S. RUTZ, E. SCHREIBER, S. VAJDA, R. de VIVIE-RIEDLE, S. WOLF, and L. WÖSTE*

Institut für Experimentalphysik and
Institut für Physikalische und Theoretische Chemie
Freie Universität Berlin
Berlin, Germany

CONTENTS

- I. Introduction
- II. Dimers
- III. Triatomics
 - A. NeNePo Experiments with Triatomics
 - B. Pump—Probe Experiments of Bound Excited Trimer States
 - C. Time-Resolved Spectroscopy of Bound-Free Trimer Transitions

^{*}Report presented by L. Wöste

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

ISBN 0-471-18048-3 © 1997 John Wiley & Sons, Inc.

- IV. Larger Clusters
 - A. Bound-Free Transitions into Excited States
 - B. NeNePo Experiments

FEMTOSECOND CHEMICAL DYNAMICS IN CONDENSED PHASES

G. R. FLEMING* and T. JOO†

Department of Chemistry and James Franck Institute
University of Chicago
Chicago, Illinois

M. CHO[‡]

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts

CONTENTS

- I. Introduction
- II. Vibrational Dynamics
 - A. Multilevel Redfield Theory
 - B. Experimental Studies
- III. System-Bath Interactions
 - A. Line Shape Function
 - B. Echo Spectroscopies
- IV. Discussion

PERSPECTIVES ON THE CONTROL OF QUANTUM MANY-BODY DYNAMICS: APPLICATION TO CHEMICAL REACTIONS

S. A. RICE

Department of Chemistry and The James Franck Institute
The University of Chicago
Chicago, Illinois

CONTENTS

- I. Introduction
- II. General Considerations
- III. The Brumer-Shapiro Method
- IV. The Tannor-Rice-Kosloff-Rabitz Method
- V. Generic Conditions for Control of Quantum Dynamics
- VI. How Much Control of Quantum Many-Body Dynamics Is Attainable?
- VII. Reduced Space Analyses of the Control of Quantum Dynamics
 - A. Reduced Representation in State Space
 - B. Reduced Representation in Coordinate Space
 - C. Reduction by Factorization: Time-Dependent Hartree Approximation
- VIII. The Control of Dynamics-Inverse Scattering Duality
- IX. Conclusions

LASER HEATING, COOLING, AND TRANSPARENCY OF INTERNAL DEGREES OF FREEDOM OF MOLECULES

D. J. TANNOR*

Department of Chemical Physics Weizmann Institute of Science Rehovot Israel

R. KOSLOFF AND A. BARTANA

Department of Physical Chemistry and the Fritz Haber Research Center The Hebrew University Jerusalem Israel

CONTENTS

- I. Introduction
- II. Instantaneous Dipole Moment: Generalized Einstein B Coefficient
- III. Vibrational Heating Using Nondestructive Optical Cycling
- IV. Nonevaporative Cooling

RAMIFICATIONS OF FEEDBACK FOR CONTROL OF QUANTUM DYNAMICS

H. RABITZ

Department of Chemistry Princeton University Princeton, New Jersey

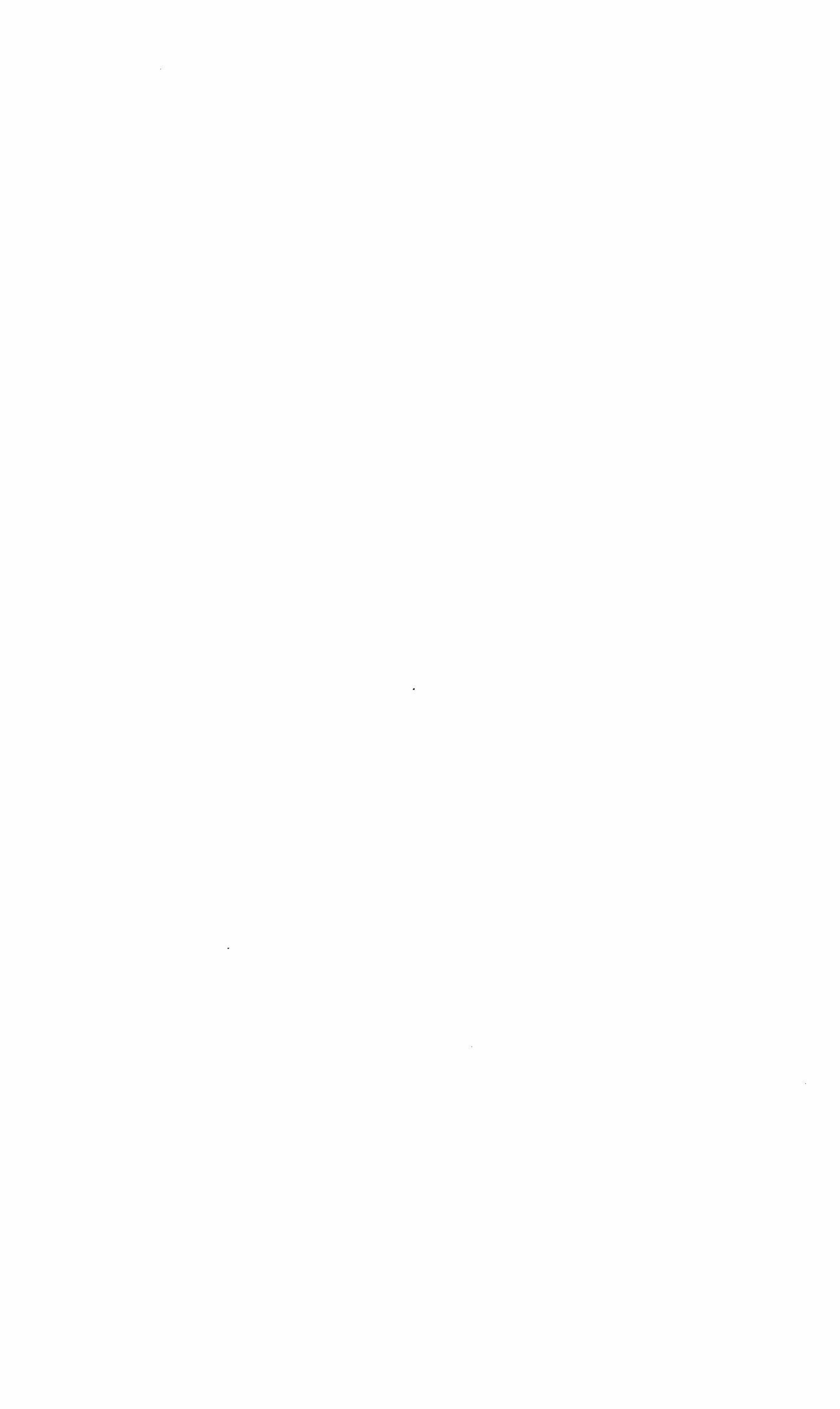
CONTENTS

- I. Introduction
- II. The Ubiquitous Role of Feedback
 - A. Feedback in the Design of Molecular Controls
 - B. Feedback in the Laboratory Control of Molecular Dynamics
 - C. Feedback in the Inversion of Molecular Dynamics
- III. Conclusion

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

THEORY OF LASER CONTROL OF VIBRATIONAL TRANSITIONS AND CHEMICAL REACTIONS BY ULTRASHORT INFRARED LASER PULSES

M. V. KOROLKOV, J. MANZ,* and G. K. PARAMONOV


Freie Universität Berlin Institut für Physikalische und Theoretische Chemie Berlin, Germany

CONTENTS

- I. Introduction
- II. Models and Techniques
- III. Applications
 - A. Individual Vibrational-State-to-Vibrational-State Transitions
 - B. Series of Vibrational Transitions
 - C. Vibrational Transitions in Competition with Dissipative Processes
 - D. Above-Threshold Dissociation
 - E. Isomerization
- IV. Conclusions

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

ISBN 0-471-18048-3 © 1997 John Wiley & Sons, Inc.

TIME-FREQUENCY AND COORDINATE-MOMENTUM WIGNER WAVEPACKETS IN NONLINEAR SPECTROSCOPY

S. MUKAMEL, C. CIORDAS-CIURDARIU, AND V. KHIDEKEL

Department of Chemistry University of Rochester Rochester, New York

CONTENTS

- I. Introduction
- II. Correlation Function Expression for Spontaneous Light Emission
- III. Wigner Wavepackets in Phase Space: The Doorway-Window Picture
- IV. Nuclear Wavepackets in Pump-Probe Spectroscopy
 - V. Extension to Heterodyne-Detected Four-Wave Mixing
 - Appendix A: Time- and Frequency-Gated Autocorrelation Signals
 - Appendix B: The Signal and the Optical Polarization
 - Appendix C: Four-Point Correlation Function Expression for Fluorescence Spectra
 - Appendix D: Phase-Space Doorway-Window Wavepackets for Fluorescence
- Appendix E: Doorway-Window Phase-Space Wavepackets for Pump-Probe Signals

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

SOLVENT DYNAMICS AND RRKM THEORY OF CLUSTERS

R. A. MARCUS

Noyes Laboratory of Chemical Physics California Institute of Technology Pasadena, California

CONTENTS

- I. Introduction
- II. Microcanonical Solvent Dynamics Modified RRKM Theory
 - A. One-Coordinate Type Treatment
 - B. Vibrational Assistance Treatment
- III. Discussion

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

HIGH-RESOLUTION SPECTROSCOPY AND INTRAMOLECULAR DYNAMICS

H. J. NEUSSER* and R. NEUHAUSER

Institut für Physikalische und Theoretische Chemie Technische Universität München Garching, Germany

CONTENTS

- I. Introduction
- II. Intramolecular Dynamics in Electronically Excited S₁ State of Benzene
 - A. Mechanism of Intramolecular Dynamics in Polyatomic Molecular System
 - B. Intramolecular Dynamics in Benzene
 - 1. States at Low Excess Energy
 - 2. Dynamic Behavior of States at Intermediate Vibrational Excess Energy
 - C. Influence of Van der Waals Bonded Noble-Gas Atoms on Intramolecular Dynamics
- III. Laser-Driven Population Dynamics and Coherent Ion Dip Spectroscopy
 - A. Introduction
 - B. Incoherent Population Dynamics
 - C. Coherent Population Dynamics
 - D. Coherent Population Dynamics for Special Pulse Sequences
 - E. Coherent Ion Dip Pulse Sequence
 - F. Experimental Results
 - 1. Experimental Setup
 - 2. Experimental Procedure of Coherent Ion Dip Spectroscopy
 - 3. Spectra
- IV. Intramolecular Dynamics of High Rydberg States in Polyatomic Molecules
 - A. General Remarks
 - B. Experimental
 - C. Experimental Results
- V. Conclusion

^{*}Report presented by H. J. Neusser

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

INTRAMOLECULAR DYNAMICS IN THE FREQUENCY DOMAIN

R. W. FIELD*, J. P. O'BRIEN, M. P. JACOBSON, S. A. B. SOLINA, W. F. POLIK[†], AND H. ISHIKAWA[‡]

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts

CONTENTS

- I. Introduction
- II. Dispersed Fluorescence Spectrum of Acetylene
- III. From Spectrum to Potential to Dynamics
- IV. A Change in Resonance Structure
- V. Summary

EMERGENCE OF CLASSICAL PERIODIC ORBITS AND CHAOS IN INTRAMOLECULAR AND DISSOCIATION DYNAMICS

P. GASPARD* and I. BURGHARDT[†]

Service de Chimie Physique and Center for Nonlinear Phenomena and Complex Systems Université Libre de Bruxelles Brussels, Belgium

CONTENTS

- I. Introduction
- II. Semiclassical Quantization around Equilibrium Points and Periodic Orbits
 - A. Time Evolution in Quantum Mechanics and Trace Formulas
 - B. Quantization around Isolated Equilibrium Points
 - C. Gutzwiller Trace Formula for Isolated Periodic Orbits
 - D. Zeta Function and Interferences between Isolated Periodic Orbits
 - E. Periodic-Orbit Expression for Eigenfunction Averages
 - F. Berry-Tabor Trace Formula and Nonisolated Periodic Orbits
 - G. Bifurcating Periodic Orbits
 - H. Semiclassical Scattering: Scattering Orbits versus Trapped Orbits
 - I. Emergence of Rate and Relaxation Behaviors: Quasiclassical Regime
- III. Bounded Systems
 - A. Energy Spectrum and Its Different Scales
 - 1. Average Level Density
 - 2. Periodic-Orbit Structures
 - 3. Energy Scale below Mean Spacing
 - B. Statistics of Level Curvature and Other Parametric Properties

ISBN 0-471-18048-3 © 1997 John Wiley & Sons, Inc.

^{*}Report presented by P. Gaspard

[†]Present address: Institut für Physikalische und Theoretische Chemie der Universität Bonn, Bonn, Germany

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

- C. Time Domain
 - 1. Beyond Heisenberg Time
 - 2. Emergent Classical Orbits and Vibrograms
- D. Diatomic Molecules
 - 1. Morse-Type Model for $I_2(\tilde{X}^1\Sigma)$
 - 2. Experimental Vibrogram of NaI by Zewail and Co-workers
- E. Triatomic Molecules
 - 1. $CS_2(\tilde{X}^1\Sigma_g^+)$
 - 2. NO₂($\tilde{X}^2 A_1 A^2 B_2$)
- F. Tetra-atomic Molecules
 - 1. $^{12}C_2HD(\tilde{X}^1\Sigma^+)$
 - 2. ${}^{12}C_2H_2(\tilde{X}^1\Sigma^+)$
- G. Synthesis
- IV. Open Systems
 - A. Energy and Time Domains
 - B. Unimolecular Dissociation Rates: RRKM Theory and Distribution of Resonances
 - C. Dissociation on Potentials with a Saddle: Classical Properties
 - 1. Classical Dynamics: The Repeller
 - 2. Bifurcation Scenario Associated with Transition to Chaos
 - 3. Fully Chaotic Regime: Smale Horseshoes
 - D. Dissociation on Potentials with a Saddle: Semiclassical Quantization
 - 1. Quantization in Periodic Regime
 - 2. Quantization in Transition Regime
 - 3. Periodic-Orbit Quantization in Fully Chaotic Regime
 - E. Ultrashort-Lived Resonances in Triatomic Molecules
 - 1. HgI_2
 - 2. CO₂
 - $3. H_3$
 - 4. O₃
 - 5. H₂O
 - 6. Comparison of Lifetimes
- V. Conclusions

ZEKE SPECTROSCOPY

E. W. SCHLAG

Institut für Physikalische und Theoretische Chemie Technische Universität München Garching, Germany

CONTENTS

- I. Introduction
- II. ZEKE Spectroscopy
- III. Conclusion

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

ISBN 0-471-18048-3 © 1997 John Wiley & Sons, Inc.

SEPARATION OF TIME SCALES IN THE DYNAMICS OF HIGH MOLECULAR RYDBERG STATES

R. D. LEVINE

The Fritz Haber Research Center for Molecular Dynamics
The Hebrew University
Jerusalem, Israel
and
Department of Chemistry and Biochemistry
University of California Los Angeles
Los Angeles, California

CONTENTS

- I. Background
- II. Preliminaries
- III. Dynamics
 - A. Effective Hamiltonian
 - B. Trapping Versus Dilution
- IV. Concluding Remarks

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

FROM RYDBERG STATE DYNAMICS TO ION-MOLECULE REACTIONS USING ZEKE SPECTROSCOPY

T. P. SOFTLEY,* S. R. MACKENZIE, F. MERKT, and D. ROLLAND

Physical and Theoretical Chemistry Laboratory
Oxford, United Kingdom


CONTENTS

- I. Introduction
- II. State-Selected Ion-Molecule Reactions
 - A. Principles of State Selection
 - B. Experimental
- III. Examples of Preparation of State-Selected Ions
 - A. Hydrogen, H₂⁺
 - B. Carbon monoxide, CO⁺
 - C. Nitrogen, N₂⁺
 - D. Nitric oxide, NO+
- IV. Studies of Ion-Molecule Reactions
 - A. $H_2^+ + H_2 \rightarrow H_3^+ + H$
 - B. Collision Energy Resolution
 - C. Transmission Effects
 - D. Rydberg State Perturbation by Collision
- V. Rydberg State Lifetimes
- VI. Experimental Measurements of Rydberg Lifetimes
- VII. MQDT Calculations of Spectra of Autoionizing Rydberg States
 - A. Method Employed in the Calculations
 - B. Calculations for Argon
 - C. Calculations for Nitrogen
- VIII. Conclusions

References

*Report presented by T. P. Softley

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

QUANTUM DEFECT THEORY OF THE DYNAMICS OF MOLECULAR RYDBERG STATES

CH. JUNGEN

Laboratoire Aimé Cotton du CNRS Université de Paris-Sud Orsay, France

CONTENTS

- I. Introduction
- II. Frame Transformations and Bound States
- III. High Orbital Angular Momentum States
- IV. States in the Electronic Continuum
- V. Determination of Quantum Defects from Experiment
- VI. Conclusion

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

ISBN 0-471-18048-3 © 1997 John Wiley & Sons, Inc.

PHOTODISSOCIATION SPECTROSCOPY AND DYNAMICS OF THE VINOXY (CH₂CHO) RADICAL

D. L. OSBORN, H. CHOI, and D. M. NEUMARK*

Department of Chemistry
University of California
Berkeley, California
and
Chemical Sciences Division
Lawrence Berkeley Laboratory
Berkeley, California

CONTENTS

- I. Introduction
- II. Experimental
- III. Results
- IV. Discussion
 - A. $CH_3 + CO$ Channel
 - B. D + CD₂CO Channel
- V. Conclusions

RESONANCES IN UNIMOLECULAR DISSOCIATION: FROM MODE-SPECIFIC TO STATISTICAL BEHAVIOR

R. SCHINKE,* H.-M. KELLER, H. FLÖTHMANN, M. STUMPF, C. BECK, D. H. MORDAUNT, and A. J. DOBBYN

Max-Planck-Institut für Strömungsforschung Göttingen, Germany


CONTENTS

- I. Introduction
- II. Potential-Energy Surfaces
- III. Quantum Mechanical Calculations
- IV. HCO: A Textbook Example of Regular Dynamics
- V. DCO: A Spectroscopic Challenge
- VI. HNO: A Mixed Regular-Irregular System
- VII. HO₂: Classical Chaos Reflected in Dissociation Rates and Product-State Distributions
- VIII. Resume and Outlook

^{*}Report presented by R. Schinke

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

ISBN 0-471-18048-3 © 1997 John Wiley & Sons, Inc.

PHOTODISSOCIATING SMALL POLYATOMIC MOLECULES IN THE VUV REGION: RESONANCES IN THE $^1\Sigma^+$ – $^1\Sigma^+$ BAND OF OCS

K. YAMANOUCHI,* K. OHDE, and A. HISHIKAWA

Department of Pure and Applied Sciences
College of Arts and Sciences
The University of Tokyo
Tokyo, Japan

CONTENTS

- I. Spectra of Dissociating Molecules
- II. Absorption Spectrum of OCS in the VUV Region
- III. PHOFEX Spectrum of the $\Sigma^{+}-\Sigma^{+}$ Band of OCS
- IV. Fano Profile in the VUV-PHOFEX Spectrum of OCS
- V. Concluding Remarks

Advances in Chemical Physics, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale, XXth Solvay Conference on Chemistry, Edited by Pierre Gaspard, Irene Burghardt, I. Prigogine, and Stuart A. Rice.

PHASE AND AMPLITUDE IMAGING OF EVOLVING WAVEPACKETS BY SPECTROSCOPIC MEANS

MOSHE SHAPIRO

Department of Chemical Physics
The Weizmann Institute
Rehovot 76100,
Israel

CONTENTS

- I. Introduction
- II. Theory of Wavefunction Imaging
- III. Imaging of a Highly Rotating Na₂ Molecule Acknowledgments References


RECENT ADVANCES IN STATISTICAL ADIABATIC CHANNEL CALCULATIONS OF STATE-SPECIFIC DISSOCIATION DYNAMICS

J. TROE

Institut für Physikalische Chemie Universität Göttingen Göttingen, Germany

CONTENTS

- I. Introduction
- II. Adiabatic Channel Potential Curves
- III. Thermal Capture Rate Constants
- IV. Specific Rate Constants for Dissociation
 - V. Comparison of Statistical Adiabatic Channel and Variational Transition-State Treatments
 - A. Comparison of SACM and VTST for Isotropic Charge-Locked Permanent Dipole Systems
 - B. Comparison of SACM and VTST for Anisotropic Charge-Permanent Dipole Systems
 - C. Comparison of SACM and VTST for General Potentials
- VI. Recent SACM Applications to More Complex Reaction Systems References

QUANTUM AND SEMICLASSICAL THEORIES OF CHEMICAL REACTION RATES

W. H. MILLER

Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, California

CONTENTS

- I. Introduction
- II. Quantum Theory
- III. Semiclassical Approximation for the CRP
- IV. Concluding Remarks

FEMTOSPECTROCHEMISTRY: NOVEL POSSIBILITIES WITH THREE-DIMENSIONAL (SPACE-TIME) RESOLUTION

V. S. LETOKHOV

Institute of Spectroscopy Russian Academy of Sciences, Troitzk, Moscow Region 142092, Russia

CONTENTS

- I. Introduction
- II. Principal Idea
- III. Femtosecond MPI of Chromophores
- IV. Laser Resonance Photoelectron Spectromicroscopy
- V. Toward Femtosecond Laser Photoion Microscopy
- VI. Conclusion