CONTENTS

THE MATCHING METHOD FOR ASYMPTOTIC SOLUTIONS IN CHEMICAL PHYSICS PROBLEMS	
By A. M. Il'in, L. A. Kalyakin, and S. I. Maslennikov	
SINGULARLY PERTURBED PROBLEMS WITH BOUNDARY AND INTERIOR LAYERS: THEORY AND APPLICATION	47
By V. F. Butuzov and A. B. Vasilieva	
Numerical Methods for Singularly Perturbed Boundary Value Problems Modeling Diffusion Processes	181
By V. L. Kolmogorov and G. I. Shishkin	
Author Index	363
Subject Index	365

THE MATCHING METHOD FOR ASYMPTOTIC SOLUTIONS IN CHEMICAL PHYSICS PROBLEMS

A. M. IL'IN

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 620219 Ekaterinburg, Russia

L. A. KALYAKIN

Institute of Mathematics, 450000 Ufa, Russia

S. I. MASLENNIKOV

Institute of Organic Chemistry, 450054 Ufa, Russia

CONTENTS

- I. Introduction
- II. Elementary Examples
- III. The Equations of Inhibited Liquid-Phase Oxidation
- IV. Asymptotic Solution of Problem I
 - A. The Fast Time Scale
 - B. The First Slow Scale
 - C. The Second Slow Scale
 - D. The Results for Problem I
 - V. Asymptotic Solution of Problem II
 - A. The Fast Scale
 - B. The First Slow Scale
 - C. The Second Slow Scale
 - D. The Explosive Scale
 - E. The Results for Problem II
- VI. Practical Applications
 - A. The Fast Time Scale, I. (t)
 - B. The First Slow Time Scale, II. $(\tau = \varepsilon t)$

Singular Perturbation Problems in Chemical Physics: Analytic and Computational Methods, Edited by John J. H. Miller, Advances in Chemical Physics Series, Vol. XCVII. ISBN 0-471-11531-2 © 1997 John Wiley & Sons, Inc.

- C. The Second Slow Time Scale, III. $(\theta = \varepsilon^2 t = \varepsilon \tau)$
- D. Determination of K_7 and W_i by the CL Method
- E. Determination of K_7 and K_i by the Spectrophotometry Method Acknowledgments

References

SINGULARLY PERTURBED PROBLEMS WITH BOUNDARY AND INTERIOR LAYERS: THEORY AND APPLICATION*

V. F. BUTUZOV and A. B. VASILIEVA

Department of Physics, Moscow State University, Moscow, Russia

CONTENTS

- I. Introduction
 - A. Singulary Perturbed Differential Equations
 - B. Asymptotic Approximations
- II. Initial Value Problem
 - A. The Passage to the Limit
 - B. Asymptotic Algorithm
- III. Boundary Value Problem
 - A. Conditionally Stable Case
 - B. Some Generalizations
- IV. The Critical Case
 - A. The Initial Value Problem for a System with a Small Nonlinearity
 - B. Other Problems in the Critical Case
 - C. The Equations of Chemical Kinetics
- V. Contrast Structures
 - A. Introduction
 - B. Contrast Structures of Step-Type
 - 1. A Second-Order Equation
 - 2. Other Cases
 - C. Contrast Structures of Spike-Type
 - 1. A Second-Order Equation
 - 2. Other Cases
 - D. Stability of Solutions Having Boundary and Interior Layers
- VI. The Method of Vishik-Lyusternik

* Portions of this chapter were adapted with permission from A. B. Vasil'eva, V. F. Butuzov, and L. V. Kalachev, "The Boundary Function Method for Singular Perturbation Problems." © 1995 by the Society for Industrial and Applied Mathematics.

Singular Perturbation Problems in Chemical Physics: Analytic and Computational Methods, Edited by John J. H. Miller, Advances in Chemical Physics Series, Vol. XCVII. ISBN 0-471-11531-2 © 1997 John Wiley & Sons, Inc.

- A. Statement of the Problem
- B. Local Coordinates
- C. The Regular Part of the Asymptotic Expansion
- D. The Boundary Layer Part of the Asymptotic Expansion
- E. Asymptotic Approximations of the Solution
- VII. Problems with Corner Boundary Layers
 - A. Elliptic Equation in a Rectangle
 - B. Corner Boundary Functions
 - C. The Role of First-Order Derivatives
 - D. Parabolic Equations
 - E. Construction of an Asymptotic Expansion for the Parabolic Problem
 - F. Other Problems with Corner Boundary Layers
 - G. Nonisothermal Fast Chemical Reactions
- VIII. Contrast Structures in Partial Differential Equations
 - A. Step-Type Solutions in the Noncritical Case
 - B. Step-Type Solutions in the Critical Case
 - C. Spike-Type Solutions
 - D. Applications
 - 1. Phase Transition Models
 - 2. Fisher's Equation
 - IX. Mathematical Model of Combustion in the Case of Autocatalytic Reaction
 - A. Statement of the Problem
 - B. Construction of the Leading Terms of the Asymptotic Expansion
 - C. Construction of Subsequent Terms of the Asymptotic Expansion
 - D. Physical Interpretation of the Asymptotics of the Solution
 - X. Heat Conduction in Thin Bodies
 - A. Statement of the Problem
 - B. Construction of the Asymptotics of the Solution
 - C. The Main Result
 - D. The Problem for a Thin Three-Dimensional Rod
 - E. The Case of a Small Thermal Diffusion Coefficient
 - F. The Problem of Thermoelasticity in Thin Bodies

Acknowledgment;

References

NUMERICAL METHODS FOR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS MODELING DIFFUSION PROCESSES

V. L. KOLMOGOROV and G. I. SHISHKIN

Institute of Engineering Science (V.L.K.) and Institute of Mathematics and Mechanics (G.I.S.), Ural Branch of the Russian Academy of Sciences, 620219 Ekaterinburg, Russia

CONTENTS

- I. Introduction
 - A. Model Problems: Object of the Research
 - B. Posing a Computational Problem with Simple Examples
- II. Numerical Solutions of the Diffusion Equation with Prescribed Values on the Boundary
 - A. Mathematical Formulation of the Physical Processes
 - B. Numerical Experiments with the Classical Finite Difference Scheme
 - C. Principles for Constructing Special Finite Difference Schemes
 - D. Special Finite Difference Schemes for Problems (2.12), 2.13) and (2.14), (2.15): Numerical Experiments with the Special Difference Scheme
- III. Numerical Solutions of the Diffusion Equation with Prescribed Diffusion Fluxes on the Boundary
 - A. Mathematical Formulation of the Problems
 - B. Numerical Experiments with the Classical Difference Scheme
 - C. Principles of Constructing Special Finite Difference Schemes for the Neumann Problem
 - D. Special Finite Difference Schemes for Problems (3.2), (3.1) and (3.4), (3.3): Numerical Experiments with the Special Finite Difference Scheme
- IV. Diffusion Equations with Concentrated Sources
 - A. Mathematical Formulation of the Problems
 - B. Classical and Special Finite Difference Schemes
 - C. Numerical Experiments with the Classical and Special Finite Difference Schemes
 - V. Application to Heat Transfer in Some Technologies
 - A. Plastic Shear in a Material
 - 1. Description of Heat Exchange under Plastic Shear
 - 2. Problem Formulation
 - 3. Numerical Investigation of the Heat Exchange Problem

Singular Perturbation Problems in Chemical Physics: Analytic and Computational Methods, Edited by John J. H. Miller, Advances in Chemical Physics Series, Vol. XCVII. ISBN 0-471-11531-2 © 1997 John Wiley & Sons, Inc.

- B. Hot Die-Forming
 - 1. Description of Heat Exchange for Hot Die-Forming: Problem Formulation
 - 2. Finite Difference Scheme for Problem (5.13)
 - 3. Numerical Investigation of the Heat Transfer Problem
- C. Hot Rolling
 - 1. Description of Heat Transfer for Hot Rolling: Problem Formulation
 - 2. Finite Difference Scheme for Problem (5.35)
 - 3. Numerical Investigation of the Heat Transfer Problem

Acknowledgments

Bibliographical Comments

References

