

CONTENTS

THE LIOUVILLE SPACE EXTENSION OF QUANTUM MECHANICS	1
By T. Petrosky and I. Prigogine	
Unstable Systems in Generalized Quantum Theory	121
By E. C. G. Sudarshan, Charles B. Chiu, and G. Bhamathi	
RESONANCES AND DILATATION ANALYTICITY IN LIOUVILLE SPACE	211
By Erkki J. Brändas	
Time, Irreversibility, and Unstable Systems in Quantum Physics	245
By E. Eisenberg and L. P. Horwitz	
Quantum Systems with Diagonal Singularity	299
By I. Antoniou and Z. Suchanecki	
Nonadiabatic Crossing of Decaying Levels	333
By V. V. Kocharovsky, Vl. V. Kocharovsky, and S. Tasaki	
CAN WE OBSERVE MICROSCOPIC CHAOS IN THE LABORATORY?	369
By Pierre Gaspard	
PROTON NONLOCALITY AND DECOHERENCE IN CONDENSED MATTER— PREDICTIONS AND EXPERIMENTAL RESULTS	393
By C. A. Chatzidimitriou-Dreismann	
Author Index	431
Subject Index	439

THE LIOUVILLE SPACE EXTENSION OF QUANTUM MECHANICS

T. PETROSKY and I. PRIGOGINE

Center for Studies in Statistical Mechanics and Complex Systems, University of Texas, Austin, Texas, and International Solvay Institutes, Université Libre de Bruxelles, Brussels, Belgium

CONTENTS

Abstract

- I. Introduction
- II. Overview
- III. The Liouvillian Formalism
- IV. Singular Fourier Expansions and Projection Operators
- V. Complex Spectral Representations
- VI. Nonunitary Transformations and Subdynamics
- VII. Lyapounov Functions—# Theorems
- VIII. Integrability Conditions and Long-Range Correlations
 - IX. Linear and Nonlinear Lippmann-Schwinger Equations
 - X. Persistent Potential Scattering
 - XI. Nonequilibrium Statistical Mechanics and Flow of Correlations
- XII. The Thermodynamic Limit
- XIII. Illustrations
- XIV. Concluding Remarks
- Appendix A. Complex Spectral Representation
- Appendix B. Star-Unitary Transformations and Hermiticity Preservation
- Appendix C. Exponentially Growing Contributions and Causal Evolution
- Appendix D. Singularity in Unitary Transformation
- Appendix E. Dynamical Groups as Approximations of Dynamical Semigroups
- Appendix F. Persistent Potential Scattering and Collapse of Wave Functions

^{*} This is a review paper which also contains a number of new results. The reader should compare it with our paper "Poincaré Resonances and the Extension of Classical Mechanics" [1], which will be referred to as "I".

Advances in Chemical Physics, Volume XCIX, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-16526-3 © 1997 John Wiley & Sons, Inc.

Appendix G. Three-Body Scattering

Appendix H. The Friedrichs Model

Appendix I. Quantum Lorentz Gas

Appendix J. Collapse of Wave Functions

Appendix K. On "Exactly Solvable" One-Dimensional Systems

Appendix L. Anharmonic Lattices

Acknowledgments

UNSTABLE SYSTEMS IN GENERALIZED QUANTUM THEORY

E. C. G. SUDARSHAN, CHARLES B. CHIU, and G. BHAMATHI

Department of Physics and Center for Particle Physics, University of Texas, Austin, Texas

CONTENTS

Abstract

- I. Introduction
 - A. Spectral Information of a Resonance
 - B. Lorentz Line Shape and Breit-Wigner Approximation
 - C. Lorentz Transformation on State with Complex Eigenvalues
 - D. Violation of the Second Law of Thermodynamics
 - E. Organization of This Chapter
 - 1. Temporal Evolution of an Unstable Quantum System
 - 2. A Theory for Unstable Quantum Systems
- II. Time Evolution of an Unstable Quantum System
 - A. Deviation from Exponential-Decay Law at Small Time
 - B. Resonance Models for Decay Amplitudes
 - C. Specific Decay Models and a Resolution of Zeno's Paradox
 - 1. The Large-t Power Law and Its Geometric Interpretation
 - 2. Two Types of t Dependence Near t = 0
 - 3. Repeated Measurements in Short- and Long-Time Limits
 - 4. Laboratory Observations on Unstable Particles and Possible Resolution of Zeno's Paradox
- III. Multilevel Unstable Systems and the Kaon System
 - A. Introduction
 - B. Multilevel Systems and Time-Evolution Matrix
 - 1. Eigenvalue Problem
 - 2. Time-Evolution Matrix
 - 3. Completeness Relation
 - C. Applications to Neutral Kaon System
 - 1. Formalism
 - 2. The Ratio $[A_{12}(t)/A_{21}(t)]$
 - 3. Regeneration Effect
- IV. Generalized Quantum System: One-Level System
 - A. Introduction
 - B. Vector Spaces and Their Analytic Continuation
 - 1. Vector Spaces \mathcal{H} and \mathcal{H}' in Conventional Formalism
 - 2. Analytic Continuation of Vector Spaces

Advances in Chemical Physics, Volume XCIX, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-16526-3 © 1997 John Wiley & Sons, Inc.

- C. Complete Set of States in Continued Spaces
- D. Friedrichs-Lee Model States
- E. Yamaguchi Potential Model States
- F. Extended Spaces and Semigroup of the Time Evolution
- G. Redundant and Discrete States in the Continuum
- H. Analytic Continuation of Survival Probability and Time-Reversal Invariance
 - 1. Analytic Continuation of Survival Probability
 - 2. Time-Reversal Invariance
- I. Two Choices for Unstable Particle States
- V. Generalized Multilevel Quantum System
 - A. Solution of Present Multilevel Model
 - B. The Inner Product $\langle M_{\beta}^* | M_{\alpha} \rangle$
 - 1. Orthonormality Relations
 - 2. The "Overlap Function"
 - C. Continued Wave Functions and Continued Spectrum
 - 1. Complete Set of Wave Functions
 - 2. Orthonormality Relations
 - 3. The Completeness Relations
 - D. Derivation of the Bell-Steinberger Relation
 - E. Summary
- VI. The Cascade Model
 - A. The Model
 - B. The Eigenstates
 - C. Orthonormality Relations
 - D. Continuation of Scattering Amplitudes and Unitarity Relations

VII. Summary and Conclusions

RESONANCES AND DILATATION ANALYTICITY IN LIOUVILLE SPACE

ERKKI J. BRÄNDAS

Department of Quantum Chemistry, Uppsala University, Uppsala, Sweden

CONTENTS

Abstract

- I. Introduction
- II. Correlated Transitions of Fermions
- III. Spontaneous and Stimulated Transitions
- IV. Self-Organization and Dynamic Correlation Patterns
- V. Connection with the Impedance-Gain Function
- VI. Conclusion
- Appendix A. The Complex Scaling Method
- Appendix B. The Jordan Block
- Appendix C. The Coherent-Dissipative Ensemble
- Appendix D. The Correlation Function

Acknowledgments

TIME, IRREVERSIBILITY, AND UNSTABLE SYSTEMS IN QUANTUM PHYSICS

E. EISENBERG

Department of Physics, Bar-Ilan University, Ramat-Gan, Israel

L. P. HORWITZ

Department of Physics, Bar-Ilan University, Ramat-Gan, and School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat-Aviv, Israel

CONTENTS

Abstract

- I. Introduction
- II. The Quantum Unstable System: A Direct Integral Space Description
- III. Construction of the Nontrivial S-matrix
- IV. Mixing of States Under the Lax-Phillips Evolution
 - A. Example
- V. Intrinsic Decoherence in Classical and Quantum Evolution
 - A. Example
 - B. Application to Classical Mechanics
- VI. Conclusions

Acknowledgments

QUANTUM SYSTEMS WITH DIAGONAL SINGULARITY

I. ANTONIOU

International Solvay Institute for Physics and Chemistry, Brussels, and Theoretische Natuurkunde, Free University of Brussels, Brussels, Belgium

Z. SUCHANECKI

International Solvay Institute for Physics and Chemistry, Brussels, Belgium, and Hugo Steinhaus Center and Institute of Mathematics, Wroclaw Technical University, Wroclaw, Poland

CONTENTS

Abstract

- I. Introduction
- II. Complete Systems of Commuting Observables and Common Eigenvectors
- III. Operators with Diagonal Singularity
- IV. States with Diagonal Singularity
- V. Operations on States and Observables—Superoperators
- VI. Time Evolution
- VII. Nonequilibrium Statistical Physics and Spectral Decomposition of the Liouville Operator
- VIII. Intrinsic Irreversibility of Systems with a Nonvanishing Collision Operator
 - IX. Conclusion
- Appendix A. A and Integral Operators Have No Common Elements
- Appendix B. The Norm of the Dual Space &
- Appendix C. Kernel Operators
- Acknowledgments
- References

NONADIABATIC CROSSING OF DECAYING LEVELS

V. V. KOCHAROVSKY AND VL. V. KOCHAROVSKY

Institute of Applied Physics, Russian Academy of Science, Nizhny Novgorod, Russia, and International Solvay Institute for Physics and Chemistry,

Brussels, Belgium

S. TASAKI

Institute for Fundamental Chemistry, Kyoto, Japan

CONTENTS

Abstract

- I. Introduction
- II. Generalized Eigenstates of the N-Level Friedrichs-Fano Model
- III. Fundamental Equations
- IV. Novel Nonadiabatic Effects due to Decay
- V. Generalized Complex Berry's Phase
- VI. Time Evolution of a Lyapunov-Type Quantity
- VII. Linear Coupling of Excited Quasi-Energy States in a Three-Level Molecule Driven by Nonsteady dc and ac Fields
 - A. Reduction to the Friedrichs-Fano Model
 - B. Coupling Equations for Decaying Discrete States
 - C. Novel Nonadiabatic Effects—Comparison with the Phenomenological Approach
- VIII. Nonadiabatic Effects in Molecules—Born-Oppenheimer Approach
 - IX. Conclusions

Acknowledgments

CAN WE OBSERVE MICROSCOPIC CHAOS IN THE LABORATORY?

PIERRE GASPARD

Service de Chimie Physique and Centre for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Brussels, Belgium

CONTENTS

Abstract

- I. Introduction
- II. Lyapunov Spectrum
 - A. Linear Stability and Lyapunov Exponent
 - B. Lyapunov Spectrum in Many-Body Classical Systems
- III. Entropy per Unit Time
 - A. Kolmogorov-Sinai Entropy per Unit Time
 - 1. Generalities
 - 2. Definition and Some Properties
 - 3. The KS Entropy in Many-Body Classical Systems
 - 4. The KS Entropy and Transport Properties
 - B. ϵ -Entropy per Unit Time
 - 1. Langevin Processes and ϵ -Entropy
 - 2. Lorentz-Boltzmann Process
- IV. Brownian Motion and Noises
- V. Conclusions

Acknowledgments