目 次

第[音	『 折紙作図の幾何学的性質ー数学を中心としてー	1
第1章	ユークリッド幾何と折紙幾何	3
1.1	幾何学の作図とその由来	3
1.2	ユークリッド幾何の作図手順	5
1.3	折紙の作図手順	8
1.4	ユークリッドの手順を折紙の手順で置き換える	15
	1.4.1 手順 (E1)	15
	1.4.2 手順 (E2)	15
	1.4.3 手順 (E3)	16
	1.4.4 手順 (E4)	16
	1.4.5 手順(E5)	17
1.5	折紙の手順をユークリッドの手順で置き換える............	18
	1.5.1 同じ手順	18
	1.5.2 基本手順 (O2) , (O3) , (O5) , (O6)	18
	1.5.3 手順 (O7)	18
第2章	方程式を折紙で解く:折紙と代数	22
2.1	1 次方程式	25
2.2	2 次方程式	27
2.3	立方根	30
2.4	3 次方程式	36
2.5	角の 3 等分線	39
2.6	4 次方程式	43
	2.6.1 4 次方程式の一般解法	43
	2.6.2 フェラーリの方法	44
	263 このことはいつでも可能か	49