目 次

第一章	界方程式
Max	well の方程式1
1 • 1	界ベクトル1
1 • 2	電荷及び電流2
1 • 3	界ベクトルの發散5
1 • 4	界方程式の積分形式5
物質	の概觀的性質8
1.5	誘導容量 ε 及び μ8
1 • 6	電氣的及び磁氣的の偏極9
1 • 7	導電媒質
單位	及びチメンション
1 • 8	M.K.S. 或は Giorgi 系
電磁	ポテンシャル
1 • 9	ベクトル及び スカラポテンシャル
1.10	等質の導電性媒質
1.11	Hertz ベクトル即ち偏極ポテンシャル
1.12	複案界ベクトル及びポテンシャル
境界	练件
1.13	界ベクトルの 不連續性
座標	素
1.14	規準及び逆ベクトル
1.15	微分演算子
1.16	6 直交系
1.17	·般直 交 座標に於ける界方程式42
1.18	3 或る初等系の性質
界テ	シソル
1.19	直交變換及びその不變式
1.20) テンソル解析の初歩 53
1•21	界方程式の空間時間的對稱
1.22	? Lorentz 變換
1.00	3 界ベクトルの動く系への變換
1.23	
第二章	應力及びエネルギ

2

目

才

2 •	1 彈性應力のテンソル	7 0	靜電 界
2 •	2 歪の解析	74	3 · 1 §
2 •	3 彈性エネルギと應力の歪に對する關係	78	3·2 ±
電荷	苛及び電流に働く電磁力	31	電荷分4
2 •	4 ベクトル E 及び B の定義	81	3.3
2 •	5 自由空間に於ける電磁應力	82	3 · 4 I
2 •	6 電磁運動量	87	3 ⋅5 ∯
靜雪	産エネルギ	88	3.6
2 •	7 電荷密度の函數としての靜電エネルギ	88	3 ⋅ 7 €
2 •	8 界强度の函數としての靜電エネルギ	91	ポテン
2 •	9 ベクトル界に關する定理	94	3.8
2.1	10 靜電界に於ける誘電體のエネルギ	95	3.9
2.1	l1 Thomson の定理	97	3.10 ₫
2.1	12 Earnshaw の定理	98	3.11 4
2.1	13 帶電してゐない導體のエネルギに關する定理	99	3.12
靜	滋エネルギ	100	誘電體
2.1	14 定常電流の磁氣エネルギ	100	3• 13
2.1	15 界强度の函數としての磁氣エネルギ	105	ポテン
2•	16 强磁性體	106	3.14
2•	17 靜磁界中の磁性體のエネルギ	107	3·1 5 i
2•	18 永久磁石の位置エネルギ	109	3.16
工	ネルギの流れ	111	3•17
2•	19 Poynting の定理	111	3.18 (
2.	20 複素 Poynting ベクトル	114	境界條
靜	電界に於いて誘電體に働く力	117	3. 19
2.	21 流體中の體的力	117	3·2 0 #
2.	22 固體中の體的力	119	3•21 I
2.	23 應力テンソル	125	球の問題
2.	24 不連續面	126	3.22
2•	25 電 歪	127	3·23 §
2.	26 流體中に置かれた物體に働く力	129	3•24
靜	磁界に於ける力	130	核国 體6
2.	27 非强磁性材料	130	3·25 à
2.	28 强磁性材料	133	3.26
7	磁界に於ける力	133	3.27
2.	29 流體內に置かれた物體に働く力	133	3.28
* ==	字 · 数 · 带 · 男	136	3.29

が 電り	『の一般的性質
3 • 1	界及びポテンシャルの方程式136
3 • 2	境界條件
電荷名	う布よりの界の計算
3 • 3	Green の定理
3 • 4	Poisson の方程式の積分141
3 • 5	無限遠に於ける行動142
3 • 6	Coulomb 界
3 · 7	積分の收斂145
ポテン	ノシャルの球面調和函數による展開146
3 • 8	電荷の軸的分布146
3 • 9	双極 (dipole)
3.10	軸的多極(axial multipole)
3.11	電荷の任意分布151
3.12	多極の一般理論
誘電	豊の偏極
3· 13	ベクトル P及び Ⅱ の説明
ポテン	ノシャル論に現れ る積 分の不連續性158
3.14	電荷と双極能率の體積分布158
3· 15	單層電荷分布 (single-layer charge distribution)
3.16	複層分布161
3•17	Green の定理の説明 163
3.18	像 (image)
境界的	条件問題
3. 19	靜電學的問題の式表示166
3·2 0	解②單一性
3.21	Laplace の方程式の解
球の問	周題
3.22	監電荷の界に於ける導體の球
3.23	點電荷の界に於ける誘電體の球174
3.24	平行界内の球175
核国	豊の問題
3.25	導體の精圓體上の自由電荷177
3·2 6	平行界內の導體の精圓體179
3.27	平行界內の誘電體の楕圓體181
3.28	E 及び D の空洞による定義
3.29	楕圓 燈に働く偶力184

目

間 題	
第四章 静 磁 界	
靜磁界の一般的性質	
4・1 界方程式及びべる	7トルポテンシャル
4・2 スカラポテンシ+	n 193
4・3 Poisson の解析	
電流分布による界の計算	f 196
4・4 Biot-Savart の法	則196
4・5 ベクトルポテンジ	/ャルの展開199
4·6 磁氣双極	201
4·7 磁殼 (magnetic s	shell)
單位及びヂメンションに	關する備考203
4・8 基本系	203
4・9 磁氣物質に對する	5 Coulomb の法則
磁氣偏極	207
4·10 等價電流分布	
4・11 磁化された棒及5	₹208
ベクトル A 及び B の	·邁續性
4・12 電流の面分布	209
4・13 磁氣能率の面不過	組織性
方程式 $V \times V \times A = \mu J$	の積分213
4·14 Green の定理の	ベクトル類似式213
4・15 ベクトルポテンジ	/ ャルへの應用
境界條件問題	217
4・16 静磁學の問題の元	【表示217
4・17 解の單一性	218
	219
4・18 一様に磁化された	- 楕圓體の解
	須國體
4・21 壜に働く力	
間 蹇	
第五章 無限に廣い等方	媒質中の平面波228
平面波の傳播	
5・1 一次元界の方程	<u>t</u>
5・2 時間に就いて調	つ的なる平面波232

論

理

5 • 3	空間に就いて調和的なる平面波236
5 • 4	偏 波
5 • 5	エネルギの流れ
5 • 6	インピーダンス
一次,	正波動方程式の一般解241
5 • 7	Fourier 解析の初步
5 • 8	非分散媒質(nondissipative medium) 内に於ける一次元方程式の一般解248
5 • 9	分散媒質 ;時間に 就 いての分布が指定される場合252
5•10	分散媒質;空 間に於ける分布が指定される場合255
5.11	數値的例による討論257
5.12	Laplace 變換の初步理論 262
5•13	Laplace 變換の Maxwell の方程式への應用
分賞	t
5 • 14	誘電體中の分散272
5.15	金屬內の分散276
5•16	イォン化された大氣中の傳播277
傳播の	>速度
5.17	群速度
5.18	波頭及ひ信號速度
問是	288
	288
第六章	I
第六章 「東界の	事
第 六章 塘界4 6・1	遺 288 遺 295 ウ方程式 295 Hertz ペクトルに依る表示 295
第六章 「東界の	場 波 295 ウ方程式 295 Hertz ベクトルに依る表示 295 スカラ並びにベクトルポテンシャル* 297
第 六章 塘界。 6·1 6·2 6·3	場288場波295プラ程式295Hertz ベクトルに依る表示295スカラ並びにベクトルポテンシャル・297正弦場界のインピーダンス299
第 六章 塘界。 6·1 6·2 6·3	事 波288方程式295Hertz ベクトルに依る表示295スカラ並びにベクトルポテンシャル・297正弦場界のインピーダンス299次動函数300
第八章 塘界。 6·1 6·2 6·3	場288場波295プラ程式295Hertz ベクトルに依る表示295スカラ並びにベクトルポテンシャル・297正弦端界のインピーダンス299ウ波動函数300基本波300
第八章 場界。 6·1 6·2 6·3 日第4	事 波288方程式295Hertz ベクトルに依る表示295スカラ並びにベクトルポテンシャル・297正弦場界のインピーダンス299次動函数300
第六章 塘界。 6·1 6·2 6·3 圖塔。 6·4 6·5	講演 295 プ方程式 295 Hertz ベクトルに依る表示 295 スカラ並びにベクトルボテンジャル・ 297 正弦場界のインピーダンス 299 D波動函数 300 基本波 300 函数 Z _P (ρ) の性質 301 圓壕波動函数の界 304
第六章 塘界。 6·1 6·2 6·3 圖塔。 6·4 6·5	博288境295ウ方程式295Hertz ベクトルに依る表示295スカラ並びにベクトルポテンジャル・297正弦場界のインピーダンス299ウ波動函数300基本波300函数 Z _P (ρ) の性質301圓場波動函数の得分表示304函数の積分表示305
第六章 塘界。 6·1 6·2 6·3 圖場。 6·4 6·5 6·6	講演 295 プ方程式 295 Hertz ベクトルに依る表示 295 スカラ並びにベクトルボテンジャル・ 297 正弦場界のインピーダンス 299 D波動函数 300 基本波 300 函数 Z _P (ρ) の性質 301 圓壕波動函数の界 304
第六章 塘界。 6·1 6·2 6·3 圖·4 6·5 6·6 波6·7	博288境295力方程式295Hertz ベクトルに依る表示295スカラ並びにベクトルポテンシャル・297正弦矯界のインピーダンス299 23動函数 300基本波300函数 $Z_P(\rho)$ の性質301国場波動函数の界304函数の積分表示305平面波解による合成305函数 $Z_n(\rho)$ の積分表示308
第六章 第八章 6·1 6·2 6·3 圖·4 6·5 6·6 波 6·7 6·8	講演 288 講演 295 ウ方程式 295 Hertz ベクトルに依る表示 295 スカラ並びにベクトルボテンシャル・ 297 正弦端界のインピーダンス 299 ウ波動函数 300 基本波 300 函数 Z _P (ρ) の性質 301 関端波動函数の界 304 転数の積分表示 305 平面波解による合成 305
第六章 塘界。 6·1 6·2 6·3 6·4 6·5 6·6 波6·7 6·8 6·9 6·10	 連渡 288 連渡 295 プラ程式 295 Hertz ベクトルに依る表示 295 スカラ並びにベクトルボテンシャル・ 297 正弦端界のインピーダンス 299 プ波動函数 300 基本波 高数 Z_P(ρ) の性質 301 関端波動函数の界 305 平面波解による合成 函数 Z_u(ρ) の積分表示 308 Fourier-Bessel 積分 311
第六章 塘界。 6·1 6·2 6·3 6·4 6·5 6·6 波6·7 6·8 6·9 6·10	 連渡 渡 295 力方程式 295 Hertz ベクトルに依る表示 295 スカラ並びにベクトルポテンシャル 297 正弦矯界のインピーダンス 299 D波動函数 300 基本波 300 政数 Z_P(ρ) の性質 301 関端波動函数の界 304 函数の積分表示 305 平面波解による合成 305 函数 Z_n(ρ) の積分表示 308 Fourier-Bessel 積分 311 平面波の表示 313
第六章 第4 6 · 1 6 · 2 6 · 3 篇 6 · 4 6 · 5 6 · 6 被 6 · 7 6 · 8 6 · 9 6 · 10 篇 6 · 11	語 波 295 カ方程式 295 Hertz ベクトルに依る表示 295 スカラ並びにベクトルボテンジャル・ 297 正弦矯界のインピーダンス 299 D波動函数 300 基本波 300 函数 $Z_p(\rho)$ の性質 301 圓矯波動函数の界 304 函数の積分表示 305 平面波解による合成 305 函数 $Z_n(\rho)$ の積分表示 308 Fourier-Bessel 積分 311 平面波の表示 313 女に對する加法定理 314

電

磁

目

6.12	基本波
6.13	積分表式
6•14	平面波及び圓波の展開325
問見	326
第七章	球 波
ベク	トル波動方程式
7 • 1	解の基本對
7 • 2	
球座	票に於けるスカラ波動方程式
7 · 3	基本球波
7 • 4	半徑函數の性質
7 · 5	Legendre の多項式に關する加法定理345
7 • 6	平面波の展開
7 • 7	積分表示
7 • 8	Fourier Bessel 積分
7 • 9	場波動函數の展開350
7.10	Z ₀ (kR) の加法定理
球座標	票に於けるベクトル波動方程式351
7-11	球ベクトル波動方程式351
7.12	積分表示
7· 13	直交性 (orthogonality)
7• 14	ベクトル平面波の展開
問是	1
第八章	輻 射
非同3	たスカラ波動方程式・
8 • 1	Kirchhoff の積分方法
8 • 2	遲延ポテンシャル (retarded potential)
8 • 3	遅延 Hertz ベクトル
多極風	展開
8 • 4	能率の定義
8 • 5	電氣双棒
8 • 6	磁氣双極
線狀型	2中線系の輻射理論
8 • 7	唯一つの線狀共振子の輻射界372
8 • 8	進行波による 輻射37 7
8 • 9	交替位相の抑制
8•10	方向性陣列

	8-11	線狀共振子の界の正確な計算385
	8.12	起電力法に依る輻射抵抗
	Kircl	hhoff-Huygens の原理391
	8•13	スカラ波動函數・・・・・・391
	8.14	界方程式の直接積分394
	8 • 15	不連續面分布
	輻射の	D問題の三次元的表示
	8.16	波動方程式の積分400
	8•17	動く 監電荷の界402
	問題	J
筆力	L章 :	境界條件問題
J ,	-	2望
	9 • 1	境界條件
	9 • 2	解が唯一なること
	9 • 3	電氣力學的相似 (electrodynamic similitude)
	平面に	こよる 反射屈折
	9 • 4	Snell の法則
	9 • 5	Fresnel の方程式
	9 • 6	誘電媒質420
	9 • 7	全反射
	9 • 8	導電性媒質内の屈折
	9 • 9	導電性面に於ける反射429
	薄板	₹434
	9·1 0	反射及び通過係數
	9.11	誘電媒質に對する應用
	3.1 2	吸收層
	表面波	Y 438
	9· 13	複素數の入射角
	9.14	表皮作用442
	国場に	- 沿ふ傳播445
	9· 15	自然振動変態 (natural mode)
	9.16	誘電體中に置かれた導體
	9-17	主波の續論
	9•18	中空管内の波457
	同心約	şß 464
	9. 19	傳播定數
	9.20	無限導電率

	9.21	有限導電率	469
	球の	摄動	472
	9.22	自然振動姿態	472
	9•23	導電性球の振動	475
	9-24	球空洞内の振動	477
	球に	よる平面波の囘折	481
	9.25	囘折界の展開	481
	9•26	全輻射	483
	9.27	極限的場合	485
	無線	波の傳播に及ぼす大地の影響	488
	9· 28	Sommerfeld の解	488
	9.29	Weyl の解	49 2
	9.30	Van der Pol の解	495
	9.31	積分の近似	497
	間	題	500
附	錄	I	510
	A.	基本常數の數値	510
	В.	電磁量のヂメンション	510
	c.	變換表	511
附	錄	II	513
	ベク	トル解析の式	513
附	錄	Ш	515
	種々	の材料の導電率	515
	金	屬及ひ合金	515
	誘	電體	515
	誘電	體の比誘電容量	516
	ガ	ス	516
	液	₿	516
	固	蹬	517
附	鐮	IV	518
	陪ル	ジャンドル函數	518
索	31		519
	索引	I (人名關係のもの)	519
	索引	II (事項關係のもの)	523