第2巻の目次

訳者まえがき 全巻の内容

第8章 潮汐波(長い波)

節	ページ
168.	微小振動の一般論;規準モード;強制振動······ 1
169-174.	一様な水路の中の自由な波;初期条件の影響;近似の程度;
	エネルギー 5
175.	定常運動の技巧12
176.	波系の重ねあわせ;反射14
177-179.	攪乱力の影響;有限の水路の中の自由および強制振動14
180-184.	潮汐波の水路理論.攪乱ポテンシャル.赤道に沿った水路と
	赤道に平行な水路の中の潮汐;半日および日周潮.子午線に
	一致した水路;平均水位の変化;2週間周期の潮汐.赤道上
	の有限な水路;潮汐のおくれ19
185, 186.	断面積の変わる水路の中の波・自由および強制振動の例;
	浅い海や河口での潮汐の増幅26
187, 188.	有限振幅の波;進行波の形の変化.2次の潮汐波31
189, 190.	2次元水面波;一般的な方程式. 長方形の水盆の振動36
191, 192.	円形の水盆の振動;ベッセル関数;等髙線.楕円形の水盆;
	ー番おそいモードの近似38
193.	深さが一様でないばあい. 円形の水盆46
194-197.	中心からの攪乱の伝播;第2種のベッセル関数.周期的な集
	中圧力による波・発散波に対する一般公式・過渡的な集中攪
	乱の例48
198-201.	球状の水層の振動;自由および強制波.水の相互引力の影響.
	子午線と緯線によって限られた海のばあい58
202, 203.	回転座標から見た力学系の運動方程式64
204-205 a.	
	規準モードの型と振動数に対する影響67

įv		
205 b.	振動数の近似計算	
206.	強制振動	74
207, 208.	流体力学的な例;回転する水平な水層の潮汐振動;	
	真直な水路内の波	
209-211.	一様な深さの円形水盆の回転;自由および強制振動	
212.	深さの変わる円形の水盆	
212 a.	近似法の例	
213, 214.	回転する地球上の潮汐振動. ラブラスの動力学的理論	
215-217.	対称振動. 長周期の潮汐	
218-221.	日周および半日周潮. ラプラスの解の議論	
222, 223.	ハウの研究;摘要と結果	
223 a.	さらに進んだ研究について	
224.	大洋の実際の形による動力学的理論の修正;位相の問題	• 110
225, 226.	大洋の安定性.動力学的安定性の一般論についての注意	• 11
寸 録.	起 潮 力	• 12
	第9章 表面波	
227.	2 次元問題;表面条件	
228.	停立波;流線·····	
229, 230.	進行波;粒子の軌道.波速;数表.単調和波列のエネルギー	
231.	重なりあった流体の振動	
232.	2 つの流れの境界の不安定	
233, 234.	定常運動の技巧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
235.	不均質な液体中の波	
236, 237.	群速度.エネルギーの伝達	• 14
238-240.	コーシー-ポアソンの波の問題;初期の集中したもり上り,	
	あるいは集中撃力による波	• 15
241.	線形媒質における集中攪乱の影響に対するケルヴィンの近似	
	公式. 図的構成	
242-246.	流れの表面の攪乱、深さが有限のばあい、底の起伏の影響	
247.	水没した円柱による波・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
248, 249.	移動攪乱による波の一般論. 造波抵抗	
250.	有限振幅の波;永久波・極限形・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
) E 1	ゲルフトナーの組みりの注	. 10

孤立波. コルテヴェークとドゥ・フリースの振動波…………… 194

252, 253.

254.	永久型の波に対するヘルムホルツの力学的条件	199
255, 256.	2次元水平面での波の伝播.集中攪乱の影響.移動する圧力	
	攪乱の影響;波模様	201
256 a, 256 b.	他の型の移動攪乱・船の波・造波抵抗・波模様に対する有限	
	深さの影響	210
257-259.	限られた水面の定常波.三角形および半円形断面の水路内の	
	横振動	213
260, 261.	縦振動;三角形断面の水路;周辺波	219
262-264.	液体球の振動,流線. 球形核上の一様な深さの大洋	226
265.	表面張力. 表面条件	231
266.	表面張力波. 群速度	232
267, 268.	重力と表面張力のもとでの波.極小波速.2つの流れの界面	
	上の波	235
269.	集中攪乱による波.移動攪乱の影響;波とさざなみ	240
270-272.	流れの表面の攪乱;形式的研究. 釣糸の問題. 波模様	241
2 73, 2 74 .	液柱の振動. ジェットの不安定性	
275.	液体球の振動, 泡の振動	252
	人名索引	
第1, 2 巻の事項索引		

装幀 戸田ツトム