第1巻目次

序 文 訳者まえがき

第1部 量子力学の形式とその解釈

第1章 量子論の起こり

§	1.	序	説		3
I.	古典	も時代の	終!	y	
§	2.	古典理	論物	物理学	4
§	3.	微視的	現象	象についての知識の進歩と物理学における量子の出現	6
п.	光如			わち光子	
§	4.				
§	5.			ノ効果	
۰	6.			干渉の現象	
§	7.	結	び		16
m.	物質	賃系にお	ける	5量子化	
§	8.	原子ス	~ !	クトルとラザフォートの古典的な模型の難点	17
§	9.	原子の	エジ	ネルギー準位の量子化	18
§	10.	他の量	:子(との例:方向量子化 ·······::::::::::::::::::::::::::::::	20
IV.	対応	に原理と	前其	胡量子論	
§	11.	古典的	な米	立子論は不十分であること	22
§	12.	対応原	理		23
§	13.	リュー	۲· -	ベリ定数の計算への対応原理の適用	24
§	14.	古典力	学0.	D方程式のラグランジュとハミルトンの形式	25

viii		
8 15	ボーア = ゾンマーフェルトの量子化規則	28
	前期量子論の成果とその限界	
§ 17.		
演習と		•
мпс	. 194 AZ	
	第2章 物質波とシュレーディンガー方程式	
§ 1.	歴史的概観と後章の大体の計画	37
1.物	質波	
§ 2.	序 説	4(
§ 3.	自由波束. 位相速度と群速度	4]
§ 4.	ゆるやかに変わる場における波束	44
§ 5.	原子のエネルギー準位の量子化	46
§ 6.	物質波の回折	47
§ 7.	物質の粒子的構造	48
§ 8.	波動 - 粒子二重性の普遍的性格	49
11. シュ	レーディンガー方程式	
§9.	物質粒子の数の保存法則	50
§ 10.	波動方程式の必要性とこの方程式に課せられた条件	
§ 11.	演算子の概念	52
§ 12.	1 自由粒子の波動方程式	
§ 13.	スカラー・ポテンシャル内の粒子	55
§ 14.	電磁場のなかの荷電粒子	56
§ 15.	対応によってシュレーディンガー方程式をつくる一般的な規則	57
	ききまないシュレーディンガー方程式	
	定常解を求めること	
§ 17.	方程式の一般的な特性. エネルギー・スペクトルの性質	61
演習と	問題	
	第3章 1次元の量子系	

第	1	巻	目	次					i	ix

I.	階段	型ポテンシャル	
ş	2.	概 説	66
ş	3.	ポテンシャルの飛躍. 波動の反射と透過	67
ş	4.	無限に高いポテノシャル障壁	72
ş	5.	無限に深いポテンシャルの井戸. とびとびのスペクトル	73
ş	6.	有限な深さの井戸型ポテンシャル、共鳴	74
8	7.	ポテンシャル障壁の透過. 《トンネル》効果	81
п.	1次	元のシュレーディンガー方程式の一般的性質	
ş	8.	ロンスキアンの性質	
ş	9.	解の漸近的な挙動	
Ę	10.	固有値スペクトルの性質	88
ş	311.	非束縛状態:波の反射と透過	
Ę	§ 12.	束縛状態の節の個数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
Ę	3 13.	直交関係	
		偶奇性についての注意	94
8	3 14.	尚 可性に うい この 仕息、	
•		問題	
•			
•		:問題	
•			
演	習と	問題 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係	
演	習と	問題 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 序 説	
演	習と 1. 波動	問題 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 序 説	97
演 !	習と 1. 波動 2.	問 題 第 4 章 波動 - 粒子二重性の統計的解釈と不確定性関係 序 説	97 98
演 !	習と 1. 波動 2.	問題 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 序 説	97 98 100
演 !	習と 1. 波動 2.	問題 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 序 説	97 98 100
演 1. *** ****	習 1. 波 2. 3. 4. 5.	第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 序 説	97 98 100 102
演 1. ** ** ** **	習 1. 波 2. 3. 4. 5.	問題 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 序 説	97 98 100 102
演	習 1. 動 2. 3. 4	### 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 第4章 波動 - 粒子二重性の統計的解釈 - つの粒子の位置と運動量の測定結果に関する確率 - 一時間の経過におけるノルムの保存 - 一流れの概念 - 一流れの概念 - 「 あるいは p の関数の平均値 - 「 タ粒子系への拡張 - 「	97 98 100 102 103
演 1. 蒙蒙蒙 1.	習 1. 動 3.4. 5.6. イ	### 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 予	97 98 100 102 103 106
演 I	習 1. 動	### 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 京	97 98 100 102 103 106
演 I	習 1. 動	### 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 京	97 98 100 102 103 106 112 113
演	習 1. 動	### 第4章 波動 - 粒子二重性の統計的解釈と不確定性関係 京	97 98 100 102 103 106 112 113

	室定性関係と測定の機構
	測定操作中の制御できない乱れ
§ 13.	位置の測定119
§ 14.	運動量の測定122
IV. 量子	- 論における現象の記述.相補性と因果律
§ 15.	統計的解釈から生じる諸問題125
§ 16.	徴視的な現象の記述と相補性127
§ 17.	相補変数. 共立な変数128
§ 18.	波動 - 粒子二重性と相補性130
§ 19.	相補性と因果律131
演習と	:問題
	第5章 波動力学の形式論の展開とその解釈
	第3章 収割力子の形式調の成例とその件が、
§ 1.	序 説135
	レミート演算子と物理量
	波動関数の空間
	平均値の定義138
§ 4.	ゆらぎのないことと固有値問題140
	ドとびのスペクトルの研究
	エルミート演算子の固有値と固有関数142
	直交規格化固有関数による波動関数の級数展開144
-	ノルムの有限な完全固有関数系をもつ演算子に対応する量の
I	測定結果の統計的分布 ······146
	役の場合における測定結果の統計
	連続スペクトルのむずかしさ. ディラックのδ関数の導入 ······149
	一般の場合の固有関数による級数展開153
	一般の場合における測定結果の統計的分布157
	連続スペクトルのもう一つの扱い方159
§ 12.	注釈と例162
IV. 波重	別関数の決定
§ 13.	測定の操作と波束の収縮. 理想測定164

	第 1 巻 目 次 xi
§ 14.	交換するオブザーバブルと共立変数166
§ 15.	交換するオブザーバブルの完全集合169
§ 16.	純粋な場合と混合の場合170
V. 交担	奏子の代数とその応用
§ 17.	交換子の代数と基本交換子の性質171
§ 18.	角運動量の交換関係173
§ 19.	統計的分布の時間的変化. 運動の定数174
§ 20.	運動の定数の例. エネルギー. 偶奇性176
演習と	:問題
	第6章 古典近似と WKB 法
	Not HAZING WILL M
	カカ学の古典的極限
§ 1.	
§ 2. § 3.	
•	返来の運動と拡散 ジュレーディンガー方程式の古典的極限186
	クーロン散乱への応用. ラザフォードの式 ·······190
П. W В	- B 法 この方法の原理
§ 7.	1 次元における WKB 法
§ 7. § 8.	1 次元におりる WKB 法 193 WKB 近似が成り立つための条件
§ 0. § 9.	限界点と接続公式
•	成介点と按抗公式 190 ポテンシャル障壁の透過 198
§ 10.	· · · · · · · · · · · · · · · · · · ·
§ 11.	井戸型ポテンシャルのエネルギー準位199
演習と	

第7章 量子論の形式的一般論

A. 数学的な枠組

31.	重わ合わせの原理と	ベクトルによる力学的状態の表現	20

1. ベクトルと演算子
§ 2. ベクトル空間. ケットベクトル204
§ 3. 双対空間. ブラベクトル206
§ 4. 内 積 ·······207
§ 5. 線形演算子 ······209
§ 6. 二つのベクトル空間のテンソル積211
Ⅱ. エルミート演算子,射影子およびオブザーバブル
§ 7. 随伴演算子と共役関係213
§ 8. エルミート(または自己随件)演算子,正の定符号エルミート演算子,
ユニタリ演算子214
§ 9. 固有値問題とオブザーバブル215
§ 10. 射影子 (または射影演算子)······217
§ 11. 射影子の代数 · · · · · · · · · 220
§12. 完全にとびとびのスペクトルをもつオブザーバブル223
§13. 一般の場合のオブザーバブルと一般化された完全性関係 ······225
§ 14. オブザーバブルの関数227
§ 15. 一つのオブザーバブルと交換する演算子. 交換するオブザーバブル ······228
Ⅲ. 表 現 論
§ 16. 有限行列についての一般的な概念230
§ 17 . 正方行列
§ 18 . 無限行列への拡張
§ 19 . 行列によるベクトルと演算子の表現236
§ 2 0. 行列の変換
§ 21 . 表現の変更241
演習と問題
第8章 量子論の形式的一般論
B. 物理的現象の記述
§ 1. 序 説249

1. 71-	子門人感と物注重
§ 2.	確率の定義. 測定に関する要請250
§ 3.	量子系のオブザーバブルとそれらの交換関係252
§ 4.	ハイゼンベルクの不確定性関係254
§ 5.	状態の定義と空間 ${\cal E}$ の構成255
§ 6.	古典類似系をもつ1次元量子系256
§ 7.	簡単な空間のテンソル積による状態空間の構成260
Ⅱ. 運動	助方程式
§ 8.	時間的変化の演算子とシュレーディンガー方程式262
§ 9.	シュレーディンガー 《表示》265
§ 10.	ハイゼンベルク《表示》266
§ 11.	ハイゼンベルク表示と対応原理268
§ 12.	運動の定数269
§ 13.	平均値の変化の方程式と時間 - エネルギー不確定性関係270
§ 14.	中間表示272
Ⅲ. 理論	侖のいろいろな表現
§ 15.	表現の定義273
§ 16.	波動力学274
§ 17.	表現 {p}
§ 18.	例:自由波束の運動
§ 19.	その他の表現. エネルギーを対角型にする表現279
IV. 量	子統計
§ 20.	完全には知られない系と統計的混合280
§ 21.	密度演算子
§ 22.	統計的混合系の時間的変化282
§ 23.	密度演算子の特性283
§ 24.	純粋な場合
§ 25.	古典統計力学と量子統計力学285
演習	と問題
付録A	. 超関数, δ《関数》およびフーリエ変換291

第1巻索引