目 次

第1章 多様体と Lie 群

1.1	多様体
1.2	微分形式10
1.3	向きと積分14
1.4	Riemann 計量と Riemann 多様体 ······18
1.5	Maxwell の電磁方程式・・・・・26
1.6	接続と共変徴分27
1.7	Riemann 曲率テンソル・・・・・32
1.8	Levi-Civita 接続と調和形式38
1.9	Riemann 多様体の構造方程式40
1.10	Lie 群と Lie 代数 ·······43
1. 11	群の表現と C [∞] 多様体の変換群 ······51
第2章 ファイバー束とゲージ変換	
	第2章 ファイバー束とゲージ変換
2. 1	主ファイバー東54
2. 1 2. 2	主ファイバー東54 同伴ファイバー東61
	主ファイバー東
2.2	主ファイバー東54 同伴ファイバー東61
2. 2 2. 3 2. 4	主ファイバー東

次 6 3.2 接続の曲率形式 ……………79 3.3 ベクトル東上の共変微分 ………84 3.4 接続とゲージ変換 ………………90 3.5 平行移動とホロノミー群 ………91 3.6 接続と特性類 ……………99 第4章 Yang-Mills 汎関数と Yang-Mills 接続 Yang-Mills 汎関数 -------106 自己双対接続——インスタントン……………116 4.3 第2変分公式 ----------122 第5章 R⁴上の Yang-Mills 接続 5.1 Yang-Mills-Higgs 場······131 5.2 **R**⁴ 上の漸近的平坦な接続 …………………136 5.3 S^4 または R^4 上のインスタントン ……141 第6章 楕円複体とモジュライ空間 6.1 楕円複体と自己双対接続の変形……………149 6.2 接続の空間 \mathcal{B}_P と接続の既約性 \cdots 156 6.3 自己双対接続のモジュライ空間………………159 参考文献とあとがき …………………164 **号**[-------171

