目 次

まえ	がき	ii
第1章	確率の基礎	1
1.1	確率と確率分布	1
1.2	確率変数の変換	2
1.3	確率変数の期待値と分散	3
1.4	多変数の確率分布	
1.5	共分散と確率変数の独立	ϵ
1.6	ベクトル型確率変数	8
問	題	11
第2章	正規分布	13
2.1	正規分布の確率密度関数	13
2.2	正規分布の重要な性質	14
2.3	中心極限定理	18
2.4	多次元正規分布	19
問	題	24
第3章	推 定	2 5
3.1	推定量の良さを表す指標	25
3.2	不偏性	26
3.3	有 効 性	27
3 4	一 致 性	28

3.5 問	最尤推定法 3.5.1 最尤原理 3.5.2 繰り返し計測における最尤推定の例 3.5.3 ベクトル型確率変数における統計量の最尤推定 題	29 29 30 32 34
第4章	線形最小二乗法	37
4.1	線形離散モデル	37
4.2	線形最小二乗法の導出	39
4.3	線形最小二乗法の解	40
4.4	最小二乗解の不偏性	42
4.5	最良線形不偏推定量	43
4.6	観測データに含まれるノイズ分散の推定	44
問	題	47
第5章	線形最小二乗法に関連した手法	49
5.1	線形最小二乗法の特異値分解による解法	49
	5.1.1 行列 H の特異値分解	49
		54
5.2	5.1.2 擬似逆行列を用いた解	-
9.2	5.1.2 擬似逆行列を用いた解正則化を用いた推定解	56
5.3		
	正則化を用いた推定解	56
5.3	正則化を用いた推定解	56 59
5.3	正則化を用いた推定解 白色ノイズの仮定が成立しない場合の最小二乗法 劣決定系の最適推定解	56 59 61
5.3	正則化を用いた推定解 白色ノイズの仮定が成立しない場合の最小二乗法 劣決定系の最適推定解 5.4.1 推定解の任意性	56 59 61 61
5.3	正則化を用いた推定解 白色ノイズの仮定が成立しない場合の最小二乗法 劣決定系の最適推定解 5.4.1 推定解の任意性 5.4.2 ミニマムノルムの解	56 59 61 61 63

第6章	センサーアレイ信号処理	69
6.1	信号源推定法:問題の定式化	69
	6.1.1 アレイ応答ベクトルと観測のモデル	69
	6.1.2 低ランク信号モデル	71
6.2	非線形最小二乗法を用いる信号源推定法	72
6.3	低ランク信号の性質を用いる信号源推定法	73
	6.3.1 低ランク信号の性質	73
	6.3.2 MUSIC アルゴリズム	76
	6.3.3 信号およびノイズ部分空間	77
6.4	線形離散モデルに近似する方法	79
6.5	補遺:ノイズ部分空間の最尤推定	80
問	題	83
第7章	ベイズ推定の基礎	85
7.1	ベイズの定理	85
7.2	確率密度分布とベイズの定理	88
7.3	線形離散モデル	90
7.4	ベイズ推定における最適推定解	91
問	題	93
第8章	ベイズ線形正規モデル	95
8.1	スカラー変数 (1 変数) の場合の簡単な例	95
8.2	事後分布の求め方―多変数の場合の簡単な例	97
8.3	多変数線形離散モデル	99
	8.3.1 事後確率分布の導出	99
	8.3.2 最小二乗解とベイズ推定解との関係	100
	8.3.3 周辺確率分布 $f(\boldsymbol{y})$ の導出	102
問	題	107

第9章	EM アルゴリズムとハイパーパラメータの推定 109
9.1	エビデンス関数 110
9.2	平均データ尤度111
9.3	EM アルゴリズム―スカラー変数の場合112
	9.3.1 観測データのモデル 112
	9.3.2 Eステップ 113
	9.3.3 M ステップ113
	9.3.4 EM アルゴリズムのまとめ 114
9.4	EM アルゴリズム―多変数の場合115
	9.4.1 平均データ尤度の導出 115
	9.4.2 ハイパーパラメータの更新式 115
	9.4.3 EM アルゴリズムのまとめ 116
9.5	EM アルゴリズムの妥当性118
問	題 120
第 10 章	5 線形動的システム121
10.1	データのモデル 121
	スカラー変数に対する線形動的システム 122
10.2	10.2.1 データモデル
	10.2.2 カルマンフィルターの導出
10.3	カルマンフィルター―多変数の場合
問	題 130
付録	線形数学における基本事項133
A.1	列ベクトルの性質
A.2	行列に関する基本的な計算規則 134
A.3	スカラーのベクトルあるいは行列での微分135
A.4	分割された行列に関する計算規則136

	A.5	並行列に関するいくつかの公式139
	A.6	行列の固有値
	A.7	行列のランク142
	A.8	行列の特異値分解142
	A.9	泉形独立なベクトルの張る空間144
	A.10	行列の列空間と零空間146
問是	夏の角	答149
参表	学文 南	
索	Ē	