目 次

	6. 対称性の自発的破れ 1~7	7
6-1	対称性の自発的破れと南部-Goldstone の定理 · · · · · · · · · Wigner 相/南部-Goldstone 相	1
6-2	対称性の自発的破れを起こす模型:二例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
6-3	NG 粒子の低エネルギー定理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
6-4	非線形表現・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
6-5	Higgs 現象 · · · · · · · · · · · · · · · · · ·	36
6-6	Higgs 現象逆定理とカラー閉じ込め・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	47
6-7	Weinberg-Salam 模型・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56
	演 習 問 題 6	75
	7. くりこみ 78~1	35
7-1	次元正則化······ Pauli-Villars 正則化/次元正則化	78

V

見かけ上の発散
くりこまれた Fo
7-4 ゲージ理論の乗法等
Ward-高橋恒等
くりこみ可能性
7-5 質量によらない対析
質量によらない
ゲージ場の質量
液習 問題 7....

8. くり
8-1 複合演算子のくり
複合演算子のでり
運動方程式と W
8-2 くりこみ群方程式・
Gell-Mann-Low
質量によらない
の目が Rofe の解
が理論および
スケール不変性
OPE 係数関数に

7-2	1-loop 計算と乗法的くりこみ・・・・・・・・ 82 フェルミオン自己エネルギー/ボソン自己エネルギー/ 3 点頂点関数/ 4 点頂点関数/乗法的くりこみ
7-3	BPHZ くりこみ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
7-4	ゲージ理論の乗法的くりこみ ・・・・・・・・・・・・ 108 Ward-高橋恒等式/くりこみ可能性の主張/ くりこみ可能性の証明/命題の証明
7-5	質量によらない対称なくりこみ・・・・・・・・・・ 122 質量によらないくりこみ/有効作用のくりこみ/ ゲージ場の質量項による赤外正則化
	演習問題 7 134
	8 . くりこみ群と演算子積展開 136~179
8-1	複合演算子のくりこみと演算子積展開・・・・・・・・・・ 136 複合演算子の定義/複合演算子の乗法的くりこみ解釈/ 運動方程式と WT 恒等式/演算子積展開
8-2	くりこみ群方程式・・・・・・ 152 Gell-Mann-Low の RGE/Callan-Symanzik 方程式/ 質量によらないくりこみに基づく斉次 RGE
8-3	くりこみ群とスケール則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	演習問題 8 177
	9 . アノマリー 180~231
9-1	アノマリーと BRS 対称性 ・・・・・・・・・・・・ 180 ゲージ不変でない正則化/くりこみの障害としてのアノマ リー/アノマリーの代数的側面

目 次

目 次

9-2	アノマリーの計算と幾何学的意味・・・・・ アノマリーとカレント保存の破れ/1-loo カレント非保存則の形/アノマリー非存る 条件/藤川の方法/アノマリーの位相幾	p グラフの計算/ 在のための一般的
9-3	アノマリーと南部-Goldstone ボソン・・・・ Wess-Zumino-Witten Lagrangian/アノ 検証/アノマリーのその他の側面	
	演習問題 9. · · · · · · · · · · · · · · · · · ·	229
	付 録	233~251
B. : C. I D. :	4 次元記法,Dirac スピノール・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	列 · · · · · 236 · · · · · 238 · · · · · 240
	文 献 解 説	253~261
	演習問題略解	263~278
	索 引	279~284

I 巻 主 要 目 次

- 1. Lorentz 群の表現と場
- 2. 場の量子化
- 3. 相互作用系の一般的性質とS行列
- 4. 経路積分と摂動論
- 5. ゲージ場の量子論