目 次

1.	. 序論	i:パターン認識の再認識	1
	1.1.	知的情報処理技術の潮流	6
	1.2.	研究の現状と課題....................................	9
		1.2.1. 人工知能・知識工学	9
		1.2.2. パターン認識と学習	4
		1.2.3. 多変量データ解析	4
		1.2.4. ニューロコンピューティング	ţ
	1.3.	基礎としてのパターン認識	(
2.	パタ	ーン認識の枠組と理論	7
	2.1.	識別の理論と手法	Ç
		2.1.1. ベイズ識別方式	1(
		2.1.2. 識別関数	1 1
		2.1.3. ノンパラメトリックな識別方式	
	2.2.	類別の理論と手法	1
		2.2.1. パラメトリックな場合	1
		2.2.2. ノンパラメトリックな場合	16
	2.3.	特徴抽出の側面と枠組	17
3.	幾何	学的不変特徴抽出の理論 2	2(
	3.1.	定式化	2:
	3.2.	不変線形特徴抽出	2:
	3.3.	ボケ不変線形特徴	2
	3.4.	非線形絶対不変特徴の構成	2′

		変換の認識			6.2.	直線度に基づく点列の折れ線近似	62
	3.6.	立体構造と運動の認識	29	7.	自動	しきい値選定法	65
4.	統計	的特徴抽出の理論	30		7.1.	諸定義と準備	66
	4.1.	線形手法としての多変量解析	31		7.2.	判別および最小2乗しきい値選定法	68
		4.1.1. 線形判別分析	31			7.2.1. 判別基準	68
		4.1.2. 線形重回帰分析	34			7.2.2. 最小 2 乗基準	69
		4.1.3. 最小 2 乗線形判別写像	34			7.2.3. 実画像の 2 値化	72
		4.1.4. K-L 展開 (主成分分析)				7.2.4. しきい値の性質	73
	4.2.	非線形判別特徴の抽出			7.3.	多値化への拡張	75
		4.2.1. 非線形判別分析	36			7.3.1. 定式化および解法	75
		4.2.2. 非線形重回帰分析				7.3.2. 多値化の応用	78
		4.2.3. 最小 2 乗非線形判別写像				7.3.3. クラス数の推定	79
	4.3.	柔らかな論理	39		7.4.	多次元の場合への応用	81
	_					7.4.1. 従来の手法と問題点	82
5.		の理論とニューラルネット	41			7.4.2. 自動しきい値選定法に基づく手法	83
	5.1.	学習の理論と手法	42			7.4.3. カラー画像の自動領域分割実験	85
		5.1.1. 識別関数の学習	42		7.5.	最大尤度しきい値選定法	88
		5.1.2. 判別関数の学習	43			7.5.1. Kittler らのしきい値選定法	89
		5.1.3. 一般的枠組としての対応関係の学習	44			7.5.2. 最大尤度しきい値選定法	90
	5.2.	多層パーセプトロン	47			7.5.3. しきい値選定実験	95
		5.2.1. モデルとその能力	47				
		5.2.2. 誤差逆伝播学習法	48				98
		5.2.3. 最尤推定としての定式化	50		8.1.	濃淡画像の BTC	
		5.2.4. 情報量基準による汎化能力の評価	51			8.1.1. 平均をしきい値とする BTC	
						8.1.2. 最小 2 乗 BTC	
6.		な分分析と直線の当てはめ	53			8.1.3. 統計量による比較評価と実験結果	
	6.1.	主成分分析による直線の当てはめと直線度			8.2.	カラー画像の BTC	
		6.1.1. 主成分分析による直線の当てはめ	54			8.2.1. 主成分スコアの平均を用いたベクトル量子化 1	
		6.1.2. 直線度	58			8.2.2. 主成分スコアのしきい値選択によるベクトル量子化1	
		6.1.3. 主成分分析による直線当てはめと直線度との関係	61			8.2.3. カラー画像のデータ圧縮実験	07

ix

9. 特異値分解による画像の情報圧縮 109	11.2.3. 輪郭形状間の距離尺度に関する実験 156
9.1. 画像の近似と周辺固有ベクトル	11.3. 複素自己回帰モデルに基づく輪郭データの圧縮 159
9.1.1. 周辺分布の拡張としての周辺ベクトル110	11.3.1. 輪郭の再構成法
9.1.2. 最小 2 乗の意味で最適な周辺ベクトル113	11.3.2. 輪郭点列の再構成
9.1.3. 画像の直交展開の性質115	<u> </u>
9.2. 画像の情報圧縮と再構成実験118	12.適応的高速画像計測・認識 165
9.3. 画像集合への拡張	12.1. 並列学習型画像計測・認識
9.3.1. 情報圧縮121	12.2. 高次局所自己相関特徴
	12.2.1. 高次局所自己相関関数
10.判別フィルタによる信号処理 124	12.2.2. 画像ピラミッド上での特徴
10.1. ノイズ除去のための線形フィルタ 125	12.3. 多変量解析手法による適応的学習
10.1.1. 線形フィルタ	12.3.1. 重回帰分析による画像計測
10.1.2. 移動平均フィルタ	12.3.2. 既知対象による入力画像の計数
10.1.3. フーリエ変換を利用するフィルタ 127	12.3.3. 線形判別分析による認識
10.1.4. ウィーナーフィルタ	12.3.4. 最小2乗線形判別写像による認識
10.2. 判別フィルタによる誘発 MEG 信号のノイズ除去129	12.4. 画像計測・認識実験
10.2.1. 誘発 MEG 信号	12.4.1. 大小 2 種類の粒子の同時計測
10.2.2. 制約付き判別フィルタ (CDF)129	12.4.2. 背景のある環境下での計数
10.2.3. 制約付き判別ウィーナーフィルタ (CDWF) 131	12.4.3. 位相的特徴の計測
10.3. 判別フィルタの適用例	12.4.4. 既知対象による入力画面の計数
10.3.1. 合成信号に対する実験	12.4.5. 顔画像の認識
10.3.2. 実際の誘発 MEG 信号に対する実験 136	
	13.画像データベースの検索 182
11.平面図形の認識・分類・圧縮 137	13.1. 主観的類似度に適応した画像検索
11.1. 複素自己回帰モデルによる形の認識	13.1.1. 商標・意匠データベースシステム
11.1.1. 複素自己回帰モデルと係数の高速計算法 138	13.1.2. グループ分けに基づく主観特徴空間の構成 180
11.1.2. 複素自己回帰モデルによる形の認識手法 142	13.1.3. 類似度に基づく主観特徴空間の構成 18
11.1.3. 形の識別実験	13.1.4. 類似画像検索法
11.2. 複素自己回帰モデルに基づく輪郭形状間の距離尺度148	13.1.5. 検索実験18
11.2.1. 複素自己回帰モデルの最尤推定と z 変換 149	13.2. 印象語による絵画データベースの検索 19
11 2 2 輪郭形状間の距離尺度 151	13.2.1. 絵画データベースシステム

X			

	13.2.2.	正準	相関	分	析	に	ょ	る	検	嗦	· 소	間	JO,	構	成						195
	13.2.3.	検索	実験	₹.																	197
参考文南	ť																				200
安 引	1																				911

目 次

...