目 次

第1章 制御系の基礎

1.1 序 説	1
[1] 自動制御系とは	1
[2] 制御工学の特色	5
1・2 システムの特性	7
[1] 自動制御システム	7
[2] 物理系の数式表示例	7
[3] システムの特性	8
1・3 伝達関数と制御系の表わし方	11
〔1〕 伝達関数	11
[2] 制御系構成要素の伝達関数]	12
[3] 伝達関数の性質	15
[4] ブロック線図	18
[5] シグナルフロー線図	
1・4 制御系の周波数特性	
[1] ベクトル軌跡と逆ベクトル軌跡2	
〔2〕 ベクトル軌跡の諸性質	
【3〕 ボード線図	
[4] ボード線図の利点	
[5] ゲイン-位相図	
1・5 制御系の過渡特性	
[1] 伝達関数と過渡特性	
[2] 根軌跡法	
1・6 制御系の状態変数による表わし方	
[1] 状態変数	
[2] 状態方程式と出力方程式	
[3] 線形状態方程式の解	
【4】 線形システムの標準形と伝達関数	
1・7 可制御性と可観測性	31

[5] 動作評価関数117

次

第6章 制御系の設計

目

6・1 線形連続制御系の設計	53
[1] 制御系の計画	53
[2] サーボ系の設計	54
[3] プロセス制御系の設計	66
6・2 サンプル値制御系の設計1	69
[1] サンプル値制御系の特性補償	69
[2] 有限整定時間応答系	71
〔3〕 ディジタル制御装置1	75
6・3 統計的手法による設計	75
6・4 非線形制御系の設計	80
[1] 直接法	
[2] 位相面解析法	83
[3] 非線形要素による特性改善法1	86
6・5 状態方程式による設計	
[1] 状態変数フィードバック1	
〔2〕 閉ループ系伝達関数の極1	89
〔3〕 閉ループ制御系の可制御性1	9(
演 習 問 題	9:
第7章 最適制御	
7・1 最適制御問題と評価量	
7・2 ポントリヤーギンの最大原理	
[1] 最大原理1	
[2] 最大原理の応用	
7・3 動的計画法による最適制御系の設計	
[1] 動的計画法―最適性の原理	
[2] 基本的な最適制御問題	
[3] 2次評価基準を用いた最適制御	
7・4 最適化の手法	
[1] 最適化制御	
[2] 適応制御	:1

1 0 % ~	214
7・6 制御系の設計および運転にお	5ける計算機の役割217
	217
[2] 制御工学における計算機の	利用218
[3] 計算機制御	219
演 習 問 題	221
	付 録
	223
1.1 ラプラス積分	223
	224
	224
	ス変換226
	227
1.6 ラプラス変換の例題	228
2. ベクトルと行列	229
2.1 ベクトルと行列	229
2.2 逆 行 列	23]
	23
2.4 基 底	233
	233
	23
	・トル・・・・・・・・23:
	23
	23
	23
	23
	24
	26
索 引	