CONTENTS

Chapter 1 CPUとは何か

● CPU って何だろう 生活の必需品「CPU」 ·······12
●コンピュータと CPU CPUの動作は単純 ·······14
●プログラムはどこにしまってあるか インストールのしくみ ······16
●フォン・ノイマン型コンピュータ プログラム内蔵&逐次処理 ······18
●制御装置と演算装置 フェッチとデコードのしくみ ······20
●電気で情報を伝える 電圧は水圧と同じ? ······22
● O と 1 のメリット 電圧変動に強い ······24
● 2 進数の世界 0 と 1 で数えよう ·······26
●バス幅とビット数 どのくらいの数まで表現できるか ·····・28
●クロックとは何か CPUはクロックに同期して動く ······30
● CPU とマイクロプロセッサ 身近なところで役立つCPU ······32
●炊飯器の働き 火加減はCPUにお任せ ······34
●組込用 CPU 暮らしを豊かにする CPU ······36
● CPU のはたらき Chapter1 のまとめ38
コラム CPU の性能比較40

Chapter 2 マイクロプロセッサの歴史

●コンピュータの歴史 バベッジとブールの貢献 ······42
● CPU は論理回路でできている ブール代数と論理演算 ······4
●スイッチで論理回路をつくる しくみはとても簡単 ······46
● CPU の中はスイッチだらけ リレーを使った論理回路 ······4
●リレーから真空管へ リレーより高速なスイッチ ·····・50
●真空管はぜいたくなスイッチ 増幅装置をスイッチとして使う ······52
● ENIAC と EDVAC フォン・ノイマン型コンピュータの完成 ·······54
●真空管からトランジスタへ
トランジスタはどのように開発されたか ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
●ノーベル賞級の発見 幸運な失敗 ······58
●トランジスタの構造 P型とN型のサンドイッチ ·····・60
●トランジスタと真空管 増幅装置にもスイッチにもなる ······62
● シリコンバレーの種 ショックレー研究所 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 64
●ゲルマニウムからシリコンへ フェアチャイルドの躍進 ······66
●シリコン・トランジスタの性能向上
メサ(台地)からプレーナ(平原)へ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
● IC の発明 プレーナから IC へ ·······7(
●写真技術をどうやって使うか プレーナ・トランジスタのつくり方 …72
● IC のつくり方 配線の方法 ······74
● MOS トランジスタの登場 バイポーラとユニポーラ ······76
● MOS トランジスタのしくみ シンプルなトランジスタ ······78
● C - MOS トランジスタ 省エネ型トランジスタ ······80
● CPU の製造法 集積回路の製造プロセス ·····82
●シリコンバレーの誕生 フェアチャイルドの子供達 ······84
●インテルの設立 主力製品は DRAM ······86

●インテルとビジコンとの出会い 日本の電卓メーカの依頼・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	··88
●マイクロプロセッサの誕生 どうしてもLSIを減らしたかった ·····・	90
● 4004 プロセッサ 4ビットのCPU ·······	92
●論理設計を誰がやるか 日本人技術者の活躍 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	··94
● 4004 は組込用 CPU ビジコンから販売権を得る ······	96
●シリコンバレーと CPU Chapter 2 のまとめ ······	98
コラム ゲーム機用 CPU の世界	•100

Chapter 3 CPUの基本

● 4004 はどんな CPU か CPUの中身を見てみよう ······102
● 4004 のレジスタ レジスタの構造は CPU の個性 ·······104
● 4004 に足し算をさせる レジスタを活用しよう ······106
●プログラムカウンタのしくみ 命令のある場所を指定する108
●キャリーフラグのしくみ 4ビットCPUで大きな数字を扱う方法 ·····110
● アドレス・スタックのしくみ サブルーチンからの戻り先 ·······112
●サブルーチンの呼び出し方 アドレス・スタックを活用する ·······114
●レジスタのサイズ 4ビット、8ビット、12ビット ·······116
●ビットとバイト 1バイトは8ビット ······118
● 16 進数のしくみ 4ビットずつ区切って見やすくする ·····120
●機械語のしくみ ニーモニックとは何か ······122
●アセンブリ言語 CPUのための言語 ······124
●命令の種類 4004 の命令体系は? ······126
●条件ジャンプ命令 条件分岐は大切 ······128
●高級言語と機械語 アセンブリ言語の限界 ······130
● 4004 はすべての基本 Chapter3 のまとめ ······132
, コンパー―クが並及するほど忙しくなる124

Chapter 4 CPUの発展

● 8 ビット CPU の世界 画期的 CPU 「8080」 ··································	136
●パソコンの誕生 ビル・ゲイツの出会い ······	138
● 8080 のアーキテクチャ レジスタをのぞいてみよう ········	140
● 8080 のメモリ空間 最大64キロバイトのメモリ ·······	142
●スタック・ポインタのしくみ 戻り番地を積み重ねる ·······	144
● 「PUSH」と「POP」 最後に入れた値から最初に出す ·······	146
●「割り込み」とは IRQでリクエスト ······	148
● 「DMA」とは CPUを使わないデータ転送 ·····	150
● 8080 のライバルたち さまざまな8ビットCPU ······	152
●インデックスレジスタの役割 アドレッシングモードとは ·····	154
●インテルの大逆転 8086 の登場 ······	156
● 8086 の中身 8080 に似たレジスタ構成 ·····	158
●セグメントとは何か メモリアドレスの指定方法 ······	160
● x86 アーキテクチャ 現在まで続く互換性 ······	162
● 8086 以外の 16 ビット CPU 高性能だった 68000 ········	164
●インテル 80286 リアルモードとプロテクトモード ············	166
●マルチタスクとは 複数のソフトを同時に使う ·····	168
●仮想記憶とは メモリを仮想的に増やす	170
●プロテクトモードのメモリ管理	
「論理アドレス」と「物理アドレス」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	172
● 80286 の欠点 逃れられないセグメントの壁	174
● 80286 搭載の大ヒットパソコン IBM PC/AT	176
● 32 ビット CPU 「80386」 80286 の欠点を克服 ·········	178
● 80386 のレジスタ構成 16ビットレジスタを32ビットに ・・・	180
● Pentium の基本は 80386 x86 アーキテクチャの完成 ······	182

6

● x86 とウィンドウズの関係 完全な32 ビットOSはNTから・・・・・・184 ●インテルとモトローラ 32 ビットCPUの対決・・・・・・・・186 コラム Pentium 4 の次に来るもの・・・・・・・188
Chapter 5 CPU の高速化技術
● CPU を速くする方法 x86 アーキテクチャの高速化 ······190
●パイプライン処理とは パイプに命令を流し込む ·····192
● RISC と CISC RISC はなぜ速いか194
● i486 は高速な 80386 RISC の手法を取り入れる ······196
●キャッシュメモリのしくみ よく使うデータを入れておくメモリ ·····198
● Pentium の登場 なぜ「i586」ではないのか ······200
●スーパースケーラのしくみ 複数の命令を同時に実行 · · · · · · · 202
●分岐予測とは何か 条件分岐の行き先は? ·····204
● 6 世代目の「Pentium Pro」 RISC化された内部 ······206
●アウト・オブ・オーダのしくみ 命令の順番抜かし ······208
●レジスタ・リネームとは レジスタの名前を付け替える ······210
●スーパーパイプラインのしくみ パイプラインの段数を増やす ······212
●投機実行とは 予測した分岐先の命令を実行する ······214
● Pentium Pro はプロ用か パソコンにはあまり採用されなかった …216
● Pentium Pro のファミリ
繁栄した6世代目のx86アーキテクチャ ·····218
● 7 代目の Pentium 4 スーパーパイプラインの強化 ······220
●クロック周波数とプロセスルール 半導体プロセスの微細化 ······222

●消費電力との戦い CPUの発熱は太陽並みに?226
●テラヘルツ・トランジスタ SOIのしくみ ······228

● VLIW とは何か 古くて新しい技術 ······230
● 64 ビット CPU 「Itanium 」 VLIW の欠点を解決 ······232
● Itanium のアーキテクチャ IA-64 とIA-32 ······234
● Pentium 4 の進化 ハイパー・スレッディングとは236
● ハイパー・スレッディングのしくみ
パソコンソフトはあまり速くならない? ・・・・・・・238
● AMD の x86 戦略 64 ビット化は成功するか ······240
●トランスメタの Crusoe と Efficeon インテルも驚いた技術力 …242
●非インテル系 CPU の世界 x86 系以外の CPU は? ·······244
● ARM はどんな CPU か 隠れた大ベストセラー CPU ······246
● CPU の未来 ムーアの法則の限界 ······248
コラム スーパーコンピュータと CPU250