目次

はじめに

Chapter 1 原子の構造

原子とは	哲学から科学へ	10
原子模型	原子には芯がある・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
原子核と		14
核の大き	さ 原子のコアをつかさどる核	16
キュリー	·夫人 2度のノーベル賞······	18
ラザフォ	· 一ド 原子には核がある······	20
電子 負	の電荷をもった粒子	22
陽電子	正の電荷をもつ電子・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
加速器	高エネルギーの粒子をつくる	26
中性子	電荷をもたない粒子	28
原子番号	号 と質量数 原子を区別する番号	30
中間子	湯川秀樹が予言した粒子・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
魔法数	中性子と陽子の数の微妙なバランス	34
コラム	原子の構造の解明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
Chapte	r2 原子核反応のしくみ	
核反応	核と粒子で新物質を生成する・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	38
核分裂の)発見 ウランが2つに割れた	40
結合エネ	スルギー 核子は仲良くひっついている	42

質量欠損とエネルギー 特殊相対論44	X線とγ線の違い 透過カバッグンの放射線······ 90
核分裂エネルギー 大きなエネルギーの発生 46	X線やγ線と電子の反応 電子のビリヤード 92
化学エネルギーと核エネルギー 大きな差 48	自然放射線 くらしの中の放射線 94
核分裂生成物が発生する理由 高レベル放射性廃棄物 50	放射線防護 身の安全を守るためには 96
同位元素 化学的特性は同じで重さは異なる 52	放射線遮蔽材 ストップ・放射線 ····· 98
しきい反応 敷居をこすには跨がねばならない 54	放射線測定器のしくみ 放射線を測るには 100
半減期 元素の崩壊には規則性がある	ラジウム温泉 放射能のお風呂? ······ 102
トンネル効果 原子は壁を通り抜ける 58	コラム 放射線利用
核分裂と核融合の違い ひっついたりはなれたり 60	
ウラン ウラン燃料は手で持つこともできる 62	Chapter 4 原子力発電のしくみ
プルトニウム 兵器級と原子炉級がある 64	Chapter 4 原于刀発電のしくみ
超ウラン元素 利用面も広い元素がある 66	原子炉の中 核分裂エネルギーを得るために
トリチウム コンクリートも通る	中性子エネルギーと核分裂 反応しやすいエネルギー 108
コラム いろいろな核反応 70	コンパクトなエネルギー源 E=mc²の大きな力 110
	連鎖反応 原子力エネルギーの基本
Chapter 3 放射線と放射能	臨界 中性子の吸収と生成のバランス
Chapter 3	中性子の減速 遅いほうが反応しやすい
放射線の種類 宇宙からふりそそぐ放射線························· 72	核燃料 核エネルギーの源
放射線と放射能 放射能とは放射線の強さ 74	核燃料ができるまで イェローケーキ 120
放射線によるエネルギー生成 物質中のエネルギー 76	再処理 ゴミの再利用
放射線の人体への影響 ちょっとこわい話 78	核燃料サイクル 資源の再利用
シーベルトとグレイの違い 放射線の目安 80	減速材・冷却材 水が使用される
放射線ホルミシス効果 放射線は薬かも 82	大昔の原子炉 自然界で起こっていた核分裂 128
CRP勧告 放射線利用の手引き 84	マンハッタン計画 原爆作りの計画 130
X線の発生 なぞの光線「X」 86	世界初の原子炉 よく成功したものだ 132
レントゲン 医療の革命児 88	原子炉の種類 目的に応じた形に

中性子スペクトルと原子炉 原子炉の性格 13	6 崩壊熱 原子炉の余熱
軽水炉 水による減速・冷却 13	8 原子炉の耐震設計 そんなことまで?!
改良型軽水炉 より安全、経済的な炉	0 核ジャック防止策 ぬすまれないの?
ガス冷却炉 こんな原子炉もある	2 原爆と原発の違い 原発は核爆発しない 186
プルサーマル 現在最も有用なりサイクル法 14	4 安全規制 国の監視······· 188
高速炉 中性子エネルギーが高い	6 放射性廃棄物 核のゴミ
燃焼度 「燃えた」量	8 原子炉の解体 最後まで面倒見ます
将来の原子力プラント 原子力の今後	O 環境保全から見た原子力 クリーンかも
受動的安全炉 さらなる安全を求めて	2 コラム 2 面からの安全性確保 196
加速器駆動未臨界システム 最も安全な原子炉かも 15	4
日本の原子力発電所 世界第3位の設備 15	6 原でも、放射線のその地の利用
コラム 軽水炉と高速炉 15	Chanter 6 リタフィン・双列級のての他の利用
	ラジオグラフィー 透視の技術 198
広フナルウク州	Spring-8 犯罪捜査にも使われた 200
Chapter 5 原子力の安全性	放射線利用 品種改良、滅菌、食品保存 202
安全性の追求 安全な利用と事故の回避	O 水素製造と淡水化 将来のクリーンエネルギー 204
原子炉の制御 中性子の数がキー	
反応度のバランス いろいろな反応度がある 16	4 医学への応用 病気を発見して治す 208
負の反応度フィードバック もともと備わる制御機構 16	6 トレーサ利用 さまざまな分野での活用
多重防護 原子力安全確保の哲学	
事故評価基準 レベル 0 からレベル 7 まで 17	O 原子力の宇宙利用 アイソトープ電池
スリーマイル島事故 史上最初の原発事故 ······ 17	
チェルノブイリ事故 史上最大の原発事故 ······ 17	4 コラム 多岐にわたる原子力関連技術 218
「もんじゅ」 2 次系ナトリウム漏れ 逸脱事象······· 17	6
JCO臨界事故 日本初の臨界事故 17	8 索引