

目 次

٠,	-	
	₹	•

**	-	-1-17	-tr-1 1 TT-1-
第	- [部	素励起の種族

第1章	結晶とフォノン・・・・・・・・・・・・・・・・・・・・・・・・・	3
§ 1. 1	巨視的物体における秩序と素励起・・・・・・・・・・・・	3
§ 1. 2	1次元モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
	a) 1 次元格子(5) b) 格子振動(7) c) 2 原子結晶(9)	
§ 1. 3	5 亿 元 阳 田	10
	a) 格子と逆格子(10) b) 調和近似のハミルトニアン(13)	
	c) 周期結晶の振動 (16)	
§ 1. 4	振動の量子化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	a) フォノン(18) b) フォノン気体の比熱(19) c) 生成・	
	消滅演算子(20) d) 運動方程式(22)	
§ 1. 5	MOSSUAUCT 划来(回体等例体压)	22
	a) 反跳エネルギー分布の一般式(24) b) Bloch-De Domi-	
	nicis の定理の応用(25) c) 無反跳 γ線の強度(27)	
§ 1. 6	中性丁非洋性敗乱とノオノン・スペノール	29
	a) Van Hove の公式(29) b) 調和近似における動的構造	
	因子 (30)	
§ 1. 7	升調和気の効木	32
	a) スペクトル関数の一般的定義(34) b) 遅延 Green 関数	
	(35)	0.5
§ 1. 8		37
	a) 温度 Green 関数 (37) b) 摂動展開 (38) c) フォノン	
	の自己エネルギー(41)	
§ 1. 9	—	43
	a) 結晶の点欠陥(43) b) 量子固体中の点欠陥(44) c) 結	
	晶の一般的定義(46)	

第2章	分極波と誘電分散・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	49
§ 2. 1	光学型格子振動と誘電分散・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	49
	a) イオン間長距離力の電場へのくりこみ(50) b) 誘電分	
	散 (54) c) 格子の固有振動 (56)	
§ 2. 2	分極率と誘電率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59
	a) 分極率の一般公式(60) b) 誘電率と分極率の関係(63)	
	c) 光学型格子振動への応用(64) d) 電子ガスのプラズマ	
,	振動と遮蔽効果(67) e) 誘電体によるエネルギーの吸収(69)	
§ 2, 3	エクシトン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
	a) Frenkel 型エクシトン (72) b) Wannier-Mott 型エク	
	シトン(76) c) 多電子系の励起状態(78)	
§ 2. 4	エクシトンの観測・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	87
Ť	a) 基礎吸収スペクトル (87) b) スピン-軌道相互作用と交	
	換相互作用(92) c) 並進運動の観測(97) d) エクシトン	
	分子(100) e) エクシトンの分裂と融合(102)	
第3章	Fermi 液体 · · · · · · · · · · · · · · · · · ·	107
§ 3. 1	Fermi 液体のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	107
Ü	a) Fermi 粒子系のハミルトニアン(107) b) 電子ガス模型	
	(109) c) 電子ガスの交換エネルギー(111) d) r _s 展開	
	(114) e) 短距離力の働く体系(115)	
§ 3. 2	多粒子系への問いかけとその応答・・・・・・・・・・・・・・・	120
	a) 外場があるときの Schrödinger 方程式(120) b) 線形	
	応答(122) c) 遅延 Green 関数と温度 Green 関数(124)	
	d) 大きなカノニカル分布の場合(128)	
§ 3. 3	電子ガス・・・・・・・・・・・・・・・・・・・・・・・・	128
	a) 外揚としての試電荷(129) b) 誘電率(131) c) 相関エ	
	ネルギー (133) d) 動的構造因子 (136)	
§ 3. 4	個別励起と集団励起・・・・・・・・・・・・・・・・	137
	a) 外場による密度のゆらぎ(137) b) 遅延 Green 関数に	
	対する第 0 近似 (138) c) 個別励起と集団励起 (141)	
	d) プラズマ振動 (144) e) ゼロ音波 (146)	

§ 3. 5	Fermi 液体の性質 ・・・・・・・・・・・ 148
	a) 準粒子のエネルギー(149) b) 準粒子の寿命(151)
	c) Fermi 面の存在,低温での比熱,帯磁率(152) d) 液
	体 ⁴ He 中の ³ He 希薄溶液(153)
第4章	相転移と素励起 ・・・・・・・・・157
§ 4. 1	相転移と対称性の破れ・・・・・・・・・・・・ 157
§ 4. 2	秩序パラメーター・・・・・・・・・・・・・・・ 159
§ 4. 3	スピン波近似・・・・・・・・・・・・・・・・162
	a) スピン欠陥(164) b) スピン波近似(164) c) マグノ
	ンの凝縮 (166)
§ 4. 4	巨視系の Hilbert 空間 · · · · · · · · · · · · · · · · · ·
	a) Hilbert 空間 (168) b) エルゴード定理 (170) c) 対称
	性の破れ (171)
§ 4. 5	対称性の破れと素励起・・・・・・・・・・・・・172
	a) 強磁性体の場合 (172) b) 古典結晶の場合 (173)
	c) 反強磁性体の場合(174) d) Goldstone の定理(178)
§ 4. 6	量子凝縮とコヒーレント状態・・・・・・・・・・・178
	a) コヒーレント表示(179) b) 超流体(180) c) 物質波
	のコヒーレンスと超流動 (183)
§ 4. 7	平均場近似・・・・・・・・・・・186
	a) 強磁性金属の Stoner モデル(187) b) 超流体の Bogol-
	jubov モデルと BCS モデル (189) c) Mott 転移 (195)
§ 4. 8	ゆらぎの問題・・・・・・・・・・・・・・・ 200
	a) Bose 不完全気体の平均場近似 (201) b) 第 2 近似 (203)
§ 4. 9	Fermi 液体とスピンのゆらぎ ・・・・・・・・・ 205
	a) バラマグノンと Fermi 液体論(205) b) 金属中の局在
	モーメント (207)
第Ⅱ部	3 素励起の相互作用
第5章	線形相互作用と連成波 ・・・・・・・・・ 215
§ 5. 1	線形相互作用・・・・・・・・・・・・・・・・ 215
§ 5. 2	光学型格子振動とキャリヤー・プラズマの相互作用・・・・・ 218

§ 5. 3	金属中の電子プラズマとイオンの振動・・・・・・・・ 220
§ 5. 4	ポラリトン・・・・・・・・・・・・・222
	a) ポラリトンと誘電分散(222) b) 空間分散と光学的素過
	程(228)
第6章	くりこみとダンピング ・・・・・・・・233
§ 6. 1	イオン結晶中の電子-フォノン相互作用 ・・・・・・・・ 233
	a) 電子が存在するときの光学型格子振動(233) b) 電子-
	フォノン相互作用(237)
§ 6. 2	ポーラロン・・・・・・・・・・・・・・・・・・239
	a) 質量のくりこみ(2次の摂動計算)(239) b) フォノンの
	雲(241) c) ダンピング(242) d) α の数値(243)
§ 6. 3	中間結合法、経路積分の方法・・・・・・・・・・・・ 244
	a) 中間結合法(244) b) 経路積分(248) c) フォノン変
	数の消去(250) d) Feynman の変分原理(254) e) ポー
	ラロンへの応用(255)
§ 6. 4	金属の電子-フォノン相互作用 ・・・・・・・・・・ 261
	a) ハミルトニアン(261) b) 電子の自己エネルギー(262)
§ 6. 5	温度 Green 関数とスペクトル関数 ・・・・・・・・ 265
§ 6. 6	摂動展開と部分和・・・・・・・・・・・・ 270
	a) 図形と演算規則(270) b) 自己エネルギー(272)
§ 6. 7	Migdal 近似と電子の自己エネルギー・・・・・・・ 275
	a) Migdal 近似(275) b) 1電子スペクトル関数(277)
	c) Dyson 方程式の解(280) d) 準粒子像の適用限界 (282)
§ 6. 8	電子-フォノン相互作用と超伝導 ・・・・・・・・・ 283
Ü	a) バーテックス関数の発散(283) b) 南部表示(285)
第7章	素励起の相互作用とスペクトル形状論・・・・・・289
§ 7. 1	非線形相互作用の働き・・・・・・・・・・・・・ 289
§ 7. 2	フォノン場における局在電子の光吸収・放出スペクトル・・・・ 294
	a) 局在電子のさまざま(295) b) スペクトルの母関数と能
	率 (296) c) 簡単なモデルによる母関数の計算 (298)
	d) フォノン・サイドバンドとゼロ・フォノン線(302)

	e) 強結合と配位座標モデル(303) f) 相互作用強度のモデ
	ル計算と実験との比較(305) g) 断熱ポテンシャルの曲率
	差の効果 (310)
§ 7. 3	エクシトン-フォノン相互作用と基礎吸収スペクトル ・・・・・312
	a) エクシトン-フォノン系のハミルトニアンと基礎吸収ス
	ペクトルの母関数(312) b) エクシトンの並進運動による
	スペクトルの尖鋭化(315) c) 間接遷移と直接遷移,その
	干渉効果(320) d) くりこみ理論(324) e) スペクトルの
	フォノン構造(329)
§ 7. 4	終状態相互作用······ 333
	a) エクシトン-フォノン複合体(334) b) 金属の軟 X 線ス
	ベクトルの Fermi 端異常(339) c) 低エネルギー素励起
	の同時励起と終状態相互作用(344)
§ 7. 5	自繩自縛状態・・・・・・・・・・・・・・・ 347
	a) ポーラロン状態と自縄自縛状態(347) b) 自由励起子と
	自繩自縛励起子(353) c)液体ヘリウム中の電子泡と励起
	子泡(355)
今後	の問題・・・・・・・・・・・・・・・・357
文献・	· 参考書 · · · · · · · · · · · · · · · · · · ·