

核融合

1.	核	融合反応と発生エネルギー						
	1.1	原子・原子核の構造						
	1.2	核反応とエネルギー3						
	1.3	原子核の結合エネルギーと反応熱4						
	1.4	核融合反応とエネルギー発生率6						
2. 核融合の実現条件								
	2.1	熱核融合反応の必要条件8						
	2.2	天体における核融合9						
	2.3	ミューオン (ミュー中間子) 核融合10						
	2.4	エネルギー源としての熱核融合達成の条件10						
3.	高	温プラズマの閉じ込めの原理						
	3.1	磁場中でのプラズマの振る舞い16						
	3.2	高温プラズマの磁場閉じ込めの原理23						
	3.3	慣性閉じ込め方式35						
1.	核融	場合研究の現状						
	4.1	核融合研究の歴史的背景40						
	4.2	加熱						
	4.3	磁場閉じ込め方式の進展						
	4.4	先進トカマクの方向						
i .	核	融合炉の概念						
ļ	5.1	発電の原理と資源62						
	5.2	核融合炉の技術的課題65						

6.	核融合炉の経済性	76
7.	あとがき	81
	索引	