目次

第1章 エネルギー資源と発電

1.1 I	ネルギーと電力1
1.1.1	一次エネルギー
1.1.2	エネルギーの電力への変換方式2
1.1.3	直接発電3
1.1.4	発電用資源と発電方式4
1.1.5	電力と地球環境問題6
1.1.6	エネルギーフロー8
1.2 発電	電所の計画
1.2.1	電源の種類10
1.2.2	電源計画12
1.3 電力	カ系統と系統運用――――――14
1.3.1	電力系統14
1.3.2	系統運用
1.4 発電	電機の概要21
1.4.1	発電機の種類と構造21
1.4.2	水車発電機とタービン発電機の差違 ······22
1.4.3	発電機の定格事項23
1.4.4	発電機の基本特性24
1.4.5	励磁装置27
問題-	
参考文献-	
	第2章 水 力 発 電
2.1 水力	ウ発電の概要29
2.1.1	理論水力と発電所出力29
2.1.2	水力発電所の種類と分類30

2.2 水力	7学の概要32
2.2.1	水の特性 ······33
2.2.2	静水力学
2.2.3	動水力学35
2.3 流量	量と落差39
2.3.1	降水量と流量39
2.3.2	流量の変動とその表し方40
2.3.3	流量の測定
2.3.4	発電所の使用流量と出力43
2.3.5	可能発生電力量44
2.4 水力	7設備—————————————————————44
2.4.1	発電用ダム ·······44
2.4.2	可動せき
2.4.3	ダムの付属設備49
2.4.4	取水口
2.4.5	水 路
2.4.6	放水路53
2.4.7	水槽およびサージタンク
2.4.8	水圧管路
2.5 水	車—————————————————————————————————————
2.5.1	水車の種類
2.5.2	水車の特性
2.5.3	吸出し管77
2.5.4	調 速 機79
2.6 水耳	三発電機87
2.6.1	水車発電機の特徴87
2.6.2	揚水発電の始動方式91
2.6.3	可変速揚水発電システム92
2.7 水ブ	J発電所の運用・保守95
2.7.1	水力発電所の制御95
2.7.2	水力発電所の保護97

	目 次 xiii
2.7.3	水力発電所の運転・保守 ······98
2.7.4	設備診断技術 ·····99
問題-	
参考文献-	
	第3章 火力発電
3.1 火力	7発電の概要103
3.1.1	火力発電の分類103
3.1.2	火力発電設備の構成106
3.2 熱	力 学————————————————————————————————————
3.2.1	熱の性質と気体の状態変化108
3.2.2	蒸気の性質110
3.2.3	熱の機械エネルギーへの変換 ······111
3.2.4	熱の伝達119
3.3 燃料	lおよび燃焼121
3.3.1	火力発電用燃料121
3.3.2	燃 焼124
3.3.3	燃料の運搬および貯蔵125
3.4 ボ	126
3.4.1	ボイラの種類126
3.4.2	ボイラの特性 ······128
3.4.3	燃焼装置
3.4.4	火 炉130
3.4.5	耐圧部分131
3.4.6	空気予熱器
3.4.7	通風装置
3.4.8	給水装置 ······134
3.5 環境	竞保全技術————————————————————————————————————
3.5.1	煤じん対策 ······-136
3.5.2	硫黄酸化物対策137

3.5.3 窒素酸化物対策 ……………………139

3.6 蒸気タービン	140	
3.6.1 蒸気タービンの種類	141	
3.6.2 蒸気タービンの構造	145	
3.6.3 蒸気タービンの特性	150	
3.6.4 調速装置	152	
3.6.5 復水装置	154	
3.7 ガスタービンとコンバインドサイクル発電	156	
3.7.1 ガスタービンの構造と特徴	156	
3.7.2 コンバインドサイクル発電の種類	161	
3.7.3 コンバインドサイクル発電の特徴	162	
3.7.4 コンバインドサイクル発電設備の構成	164	
3.8 タービン発電機	167	
3.8.1 発電機の種類	167	
3.8.2 発電機の構造	167	
3.8.3 励磁方式	168	
3.8.4 発電機の冷却方式	169	
3.9 運転・保守	172	
3.9.1 火力発電設備の運転	172	
3.9.2 火力発電設備の保守	·····173	
3.9.3 火力発電設備の保護	175	
問 題	175	
参考文献————————————————————————————————————	177	
第4章 原子力発電		
4.1 原子力発電の概要	178	
4.1.1 原子エネルギー	179	
4.1.2 原子力発電の原理	179	
4.1.3 原子力発電の種類	184	
4.2 改良形軽水炉————————————————————————————————————	189	
4.2.1 軽水炉の改良標準化	189	
4.2.2 改良形沸騰水形原子炉	190	

4.2.3	改良形加圧水形原子炉191
4.3 原	子力発電所の運転制御と原子炉理論193
4.3.1	原子炉の制御とその特徴193
4.3.2	原子炉理論
4.3.3	原子炉の計測と運転制御198
4.4 原	子力発電所の安全性201
4.4.1	安全確保の基本的考え方201
4.4.2	安全設計204
4.4.3	安全評価208
4.4.4	リスク評価とアクシデントマネジメント210
4.4.5	防 災211
4.4.6	定期安全レビュー·······212
4.4.7	安全文化212
4.5 核烷	燃料と核燃料サイクル 213
4.5.1	核燃料サイクル213
4.5.2	ウラン濃縮215
4.5.3	再 処 理216
4.5.4	放射性廃棄物の処理・処分217
4.5.5	輸 送218
4.6 運転	运保守————————————————————————————————————
4.6.1	運 転219
4.6.2	保 守223
問題-	226
	第5章 分散形電源
	第 9 草 7 放 形 电 <i>源</i>
5.1 風力	力発電230
5.1.1	風力発電の原理230
5.1.2	各種風力発電方式の特徴234
5.1.3	開発状況および今後の技術課題 ······235
5.2 太陽	易光発電
5.2.1	太陽光発電の原理236

5.2.2	システム構成239
5.2.3	開発状況および今後の技術課題 ······241
5.3 地熱	·発電————————————————————————————————————
5.3.1	地熱発電の原理242
5.3.2	各種地熱発電方式の特徴245
5.3.3	今後の課題249
5.4 電力	」貯蔵技術249
5.4.1	電力貯蔵の意義249
5.4.2	電池電力貯蔵250
5.4.3	フライホイール256
5.4.4	超電導電力貯蔵(SMES)258
5.4.5	圧縮空気電力貯蔵260
5.4.6	電気二重層キャパシタ262
5.5 燃料	智電池263
5.5.1	燃料電池の基礎263
5.5.2	種類ごとにみた燃料電池の特徴269
5.5.3	発電システムとしての構成270
5.5.4	
5.6 J-	-ジェネレ ー ション275
5.6.1	コージェネレーションの概要275
5.6.2	
5.6.3	わが国のコージェネレーションの状況278
5.6.4	産業用コージェネレーション279
5.6.5	民生用コージェネレーション281
5.6.6	コージェネレーションの今後の課題283
問 題-	
参考文献-	
	第6章 変電 設備
6.1 変電	雲所の機能と構成──── <i>286</i>
	変電所の役割

6.1.2	変電所の種類287
6.1.3	変電所の形式287
6.1.4	母線方式
6.1.5	変電所の設備構成290
6.1.6	最近の変電所の特徴290
6.2 変	圧器————————————————————————————————————
6.2.1	変圧器の機能と定格293
6.2.2	変圧器の原理297
6.2.3	変圧器の構造301
6.2.4	結線方式306
6.2.5	中性点接地方式
6.2.6	変圧器の運用309
6.2.7	
6.2.8	変圧器の試験314
6.3 遮	断 器316
6.3.1	遮断器の機能と定格316
6.3.2	遮断責務319
6.3.3	遮断現象と遮断方式322
6.3.4	
6.3.5	
6.4 断	路器,接地装置—————————————————— <i>328</i>
6.4.1	断路器,接地装置の機能と定格328
6.4.2	断路器,接地装置の開閉責務330
6.4.3	断路器,接地装置の構造 ······331
6.5 避	
6.5.1	避雷器の機能と定格332
6.5.2	
6.6 複·	合開閉装置 <i>337</i>
6.6.1	
	SIS341
6.7 調	相設備————————————————343

xviii 目 次

6.7.1	同期調相機	··343
6.7.2	電力用コンデンサ	344
6.7.3	電力用コンデンサと同期調相機との比較	346
6.7.4	分路リアクトル	346
6.8 変電	『所の運転制御――――――――――――――――――――――――――――――――――――	-347
6.8.1	変電所の制御装置	347
6.8.2	配 電 盤	347
6.8.3	変電所の監視制御	··348
6.9 変電	『所の保護	-349
6.9.1	保護継電システムの目的と構成	349
6.9.2	保護継電システムに必要な機能	349
6.9.3	変圧器の保護継電方式	350
6.9.4	母線の保護継電方式	352
6.9.5	調相設備の保護継電方式	·· <i>353</i>
6.10 変	電所の保守	-354
6.10.1	保守・点検の概要	···354
6.10.2	? 変電所保守の動向	355
6.10.3	外部診断技術	·· <i>356</i>
問 題-		-357
参考文献-		- 35 8
問題解答-		-359
索 引-		-365