目 次

まえがき 山藤 馨

Ι.	超伝導	マグネットの総合的研究	山藤	整		1
II .	核融合	超伝導マグネット用低温構造・絶縁材	の評価 岡田	と特性3 東一	文善·	7
		低温構造材の変形・破壊挙動と 核融合超伝導マグネット設計へ の応用	前川	一郎		10
		― 疲労・セレーション及び発熱評	価 一			
	II.2	低温構造材の溶融法の評価と 歪速度効果	岸田	敬三		12
	II.3	マグネット構造材の摩擦発熱	岩淵	明		14
	II .4	超伝導マグネット絶縁材の開発と 耐放射線性の向上	山岡	仁史		17
		― 耐放射線性マトリックス材料の	開発 -			
	II.5	超伝導マグネット絶縁材料の開発と耐放射線性の向上	西嶋	茂宏		19
		耐放射線性複合材料の構成方法				
III .	核融合	用先進超伝導線材特性の向上と実用導				23
			能登	宏七		40
	III.1	Nb3Al線材の特性向上	渡辺	和雄		25
	III.2	Nb₃Al超伝導体の線材化とその特性	池田	圭介		27
	III.3	高磁界用Nbs,Al基超伝導線材の研究	太刀川	恭治		30
	III . 4	シェブレル相超伝導体の線材化と 特性評価	濱崎	勝義		35
	III.5	Bl型NbN長尺線の製作	鈴木	光政		38
	Ш.6	超伝導材料の微細組織と 臨界電流密度	落合店	E治郎		40

	III . 7	化合物超電導体中の微視的構造欠陥 とピン特性の相関の定量的解明	長村	光造		42
	8. III	rf溶解インゴットより製造した in situ Nb₃Sn線材の特性評価	永田	明彦		44
		CaOるつぼ溶解によるin situ法 VeGa線材の作製	佐藤	敬		47
	III.10	磁性元素添加Cuマトリックスの特性	八十濱	和彦		49
	III.11	Nb₃Sn極細多芯線の交流損失	久保田	洋二		52
	III.12	超電導撚線の高速常電導転移現象	岩熊	成卓		55
	III.13	先進超電導線材・導体の歪効果	片桐	一宗		58
	Ⅲ.14	照射劣化の評価	吉田	博行		61
	Ⅲ.15	高伝導率・高強度材料の開発 — CaOるつぼ溶解CuNb分散複合材の	池田 り強度る	弘毅 と電気担	·····································	64
1117	TT HI A					
17.	核艇台	用超伝導マグネットの電磁構造力学と	クライ 高橋	オメカ: 秀明	ニックス 	6 7
	IV.1	コイル剛性評価 - 超伝導マグネットの初期不整合	庄子 の非破	哲雄 壊計測	····································	71
	IV.2	電磁破壊力学と構造性健全評価法	進藤	裕英		73
	IA.3	構造解析による発熱評価技術の開発	谷	順二		76
	IV . 4	超伝導小型ヘリカルコイル (KYOTO-SC)の励磁試験	三戸	利行		79
	IV.5	大型ヘリカルコイルにおける三次元 磁場解析法の開発	平林	洋美		82
V	tt ph A	実験社専用上刑却示道ラグネ… しゃい	. 4n de es	e lle TL we	≀u ≐±	
٧.	1次 NIX 口	実験装置用大型超電導マグネットの冷	塚本	修巳	水 喪 · <i>-</i>	85
	V.1	超電導マグネットにおける機械的 擾乱の定量化と巻線精度	塚本	修巳		89
	V.2	複合テープ超伝導体の動的安定化に 関する研究	小笠原	武		92
	V.3	面冷却超伝導テープ導体の 励磁安定性	野田	稔		95

V .4	常電導部の伝播解析	石山	敦士	 98
V.5	液体ヘリウム浸漬冷却超電導 マグネットにおける微小擾乱 測定用センサの開発	藤田	博之	 101
V.6	超伝導ケーブル導体のストランド 間接触抵抗の評価法	住吉	文夫	 104
V.7	超伝導撚線における高速常電導転移 過程	船木	和夫	 107
V.8	超音波を用いた超電導マグネットの クエンチの検出法に関する研究	石郷岡	1 猛	 109
V.9	超電導マグネット内の巻線運動と 不安定性との関係	近葉	實雄	 112
V.10	超電導コイルの電気絶縁評価	原	雅則	 115
V.11	被膜型超電導体の低温安定性に 関する研究	西尾	茂文	 118
V.12	過渡プール沸騰特性	桜井	彰	 121
V.13	強制冷却の熱流動特性	福田	研二	 124
V.14	強制冷却導体の特性評価	山本	純也	 127
V.15	HeIプール冷却安定性(過渡)	伊藤	猛宏	 131
V.16	He II 冷却方式	小林	久恭	 134
V.17	電流リードの低損失化	松原	洋一	 137