CONTENTS

Preface Organization Research Summaries

Group I: Reactor Materials and Plasma-Wall Interactions

I.1	Fusion reactor materials and plasma-wall interactions	1
I.2	Correlations among radiation effects in different irradiation environment and fusion	
	reactor materials development	2
I.3	Overall evaluation study for graphites as fusion first wall material	4
I.4	Characteristics of radiation damage in ceramics	8

Group II: Environmental and Biological Effects of Tritium

II. 1	The tritium studies in the Japanese fusion program (the steering committee)	11
II.2	Variations of tritium in the environments including biological samples and their	
	interpretation through the analysis	13
II.3	Tritium metabolism and biological monitoring	15
II.4	Dose-rate effect of tritiated water on biological system and its relationship to relative	
	biological effectiveness	17
II.5	Fundamental studies on tritium technology fuel cycle, waste management and	
	safety confinement	19

Group III: Fundamentals of Reactor Plasma Control

III.1	Fundamental research on fusion plasma control (coordinating committee)	21
III.2	Diagnostic techniques for high temperature and high density plasma, and	
	improvement of implosion efficiency	23
Ш.3	Transport and control on RF-heated and current drive plasmas	
III.4	Spatial structures related to optimization of plasma confinement	
III.5	Plasma confinement of a helical axis stellarator (Tohoku University HELIAC)	
III.6	Computer modelling of plasma dynamics	

Group IV: Superconducting Magnets

IV.1	Basic research of superconducting magnets for nuclear fusion	35
IV.2	Development and evaluation of cryogenic structural and insulating materials for	
	fusion magnets	37
IV.3	Improvement and measurements of advanced and practical superconductors for	
	nuclear fusion	39

IV.4	Electromagnetic structural mechanics and cryomechanics for fusion reactor	
	superconducting magnet	41
IV.5	Cryostabilization and quench protection of large scale superconducting magnets for	
	fusion experimental devices	43

Group V: Fusion Reactor Blanket Engineering

V.1	Promotion of fusion reactor blanket engineering4	5
V.2	Thermomechanical system of high heat flux wall of high power density fusion	
	reactor4	7
V.3	Basic studies on breeding and recovery of tritium in CTR blanket	
	Part 1 Breeding material production, recovery, separation and storage of tritium	0
V.4	Basic studies on breeding and recovery of tritium in CTR blanket	
	Part 2 Evaluation of tritium breeding on lithium blanket	2

Group VI: Design and Evaluation of Fusion Reactor

VI.1	Design and evaluation of fusion reactors (steering committee)	55
VI.2	System analysis of reactor components	56
VI.3	Evaluations and design of a fusion reactor	58
VI.4	Plasma production and conditioning technology in Heliotron-E, Gamma-10,	
	Gekko XII and trium facilities	61