CONTENTS

.

Preface Organization Research Summaries

Group I:	Reactor Materials and Plasma-wall Interactions	
I. 1	Fusion reactor materials and plasma-wall interactions	1
I. 2	Irradiation behaviour of materials under complex conditions and the modelling of the	
	behaviour	2
I. 3	Evaluation of isotropic graphite as fusion first wall materials and stabilities against	
	plasmas	4
I. 4	Development of low activity vanadium-base alloys under fusion reactor environment	6
I. 5	Relation between radiation-induced segregation and corrosion resistance in ferritic	
	steels	8
I. 6	Defect structures and mechanical properties of materials irradiated by fusion neutrons	
	with RTNS-II	10
I. 7	The irradiation effects on the microstructure and properties of reduced radio-activation	
	steels	12
I. 8	Deformation and fracture at high temperature of neutron and ion irradiated small	
	specimen	14
I. 9	Evaluation of radiation damage in ceramics	15
I.10	Reflection phenomena of particles during hydrogen recycling process	17
I.11	Physical and chemical processes of ion wall-materials interactions in the low energy range	
	(below 100 eV)	19
I.12	Thermal shock and fatigue properties of coated fusion reactor materials	21
0		
•	Environmental and Biological Effects of Tritium	
II. 1	The tritium studies in the Japanese fusion program (the steering committee)	23
II. 2	Variations of environmental tritium and their interpretation through the analysis	25
II. 3	Biomedical effects of tritiated water	27

II. 4	4	The transfer of tritium in the environment (II)	29
II. :	5	Metabolism of tritium and its biological effects	31
II. (6	Oxidation of tritium gas by microbes and its mechanism	33
II. ′	7	Development of a tritium simulator by the use of 137Cs sources for risk estimation of	
		biological effects of tritium	35
II. S	8	Tritium contents in Japanese bodies	37
II. 9	9	In vivo somatic mutation in mice induced by tritium	39
II.1	0	Relative biological effectiveness of tritium in various human cells and mammals	41

II.11	Radiation effect on nucleic acid induced by tritiated water	43
Group II	I: Fundamentals of Reactor Plasma Control	
III. 1	Time-resolvable measurement of implosion process by X-ray pinhole camera in the	
	interaction of light ion beam with target	45
III. 2	Amplification of the high efficiency atmospheric ArF/KrF laser in a strongly saturated	
	region	47
III. 3	Atomic processes in laser-imploded plasmas	49
	Polarized fuel fusion	
	Antennas and transmission systems for high power RF plasma heating	•
III. e	Heating and control of plasma by Alfven waves	55
	Development of Schottky diode detector/mixers for high-temperature plasma	
	diagnostics	57
III. 8	Experimental studies for the confinement of the plasma in the system with a helical	
	axis	59
III. 9	Improvement of confinement of reversed field pinch	
) Formation and current sustainment of RFP by means of magnetic separatrix	
III.1	Measurement of profiles of temperature and density in field-reversed configuration	
	plasma	65
III.12	2 Development of the laser fluorescence for impurity detection in peripheral plasmas	67
III.13	Theory of elementary processes related to fusion research	69
III.14	Transport theory in fusion plasmas – Development of new theoretical method	71
III.1:	5 Fundamental research on fusion plasma control (coordinating committee)	73
III.10	Development of diagnostic techniques of implosion plasma	76
III.1'	7 Transport and control on RF-heated plasmas	80
III.1	3 Studies on the optimization of plasma confinement in external conductor systems	82
III.1	O Computer experiments of nonlinear plasma dynamics	87
Group I	V: Superconducting Magnets	
	Basic aspect of R & D of superconducting magnet technology (the fourth group)	89
	2 Improvement and evaluation of advanced component wire materials for fusion magnet .	
	3 New method of stabilization for high-current-density superconducting magnet	
	4 Development of advanced A15 type superconducting wires for high magnetic fields	
	5 Microstructure of A15 type superconductors and its influence on pinning force	
	6 Mechanical properties of structural materials for superconducting magnets (fatigue	- •
TA.	characteristics and optimum welding process)	99
īV	7 A comprehensive study on flow and heat transfer in the cooling of superconducting	
1 .	magnet	101
	Шадиус	101

	IV. 8	Development of indirect cooling superconducting magnet
	IV. 9	Energy losses due to mechanical disturbances in superconducting magnets 105
		Electromagneto-fracture mechanics approach on structural integrity assessment system
		of super-conducting magnet for fusion reactor
	IV.11	Quench detection of superconducting magnets using ultrasonic wave
		Development of high current density superconductor by dynamic-cryogenic
		stabilization
Gre	oup V:	Fusion Reactor Blanket Engineering
	V. 1	Promotion of fusion reactor blanket engineering
	V . 2	Benchmark experiment on fusion neutron transmission and development of the
		calculational methods
	V . 3	Magneto-hydro-dynamic, thermal and structural studies on liquid metal lithium cooling
		of fusion reactors
	V. 4	Prediction of long-term creep curves under service condition of nuclear fusion reactor 119
	V . 5	Sodium mist cooling of a hot surface in compact cassette toroid reactor
	V. 6	Development of flaw detection and repairing system for a fusion reactor first wall 123
	V . 7	First wall behavior under disruption load
	V. 8	Inelastic behavior of PCA material under biaxial stress state
	V. 9	Fusion reactor blanket cooling by use of gas-solid suspension medium
	V .10	Breeding and recovery of tritium in CTR blanket
	V .11	Applicability of Zr-alloy getters to recovery, purification and storage material of
		breeding tritium
	V .12	Sintering control of lithium compounds for blanket
Gro	oup VI	: Design and Evaluation of Fusion Reactor
	VI . 1	Design and evaluation of fusion reactors (coordinating committee)
	VI. 2	Tritium plasma experiment-plasma driven permeation
	VI. 3	Plasma production and conditioning technology in Heliotron-E, Gamma-10 and

- Gekko-XII facilities (collaboration with established small groups)
 141

 VI. 4 Three-dimensional fracture mechanics analyses and evaluation of first wall under electromagnetic force
 143

 VI. 5 Characteristics of the DT and the advanced fuel fusion reactor
 145

 VI. 6 Quick replacement technology for high load core elements in high power density fusion reactor
 147

 VI. 7 Feasibility of magnetically insulated and inertially confined fusion
 149

 VI. 8 Space application of fusion energy
 151