CONTENTS

Preface

Organization

Research Summaries

Group I: Reactor Materials and Plasma-wall Interactions L 1 Fusion reactor materials and plasma-wall interactions 1 I. 2 Irradiation behaviour of materials under complex conditions and the modelling of the behaviour 2 I. 3 Characterizations of graphite and low Z ceramics as fusion first wall materials and evaluations of stabilities against plasmas 4 I. 4 Relation between radiation-induced segregation and corrosion resistance in ferritic steels 7 I. 5 Evaluation of radiation damage in ceramics 9 I. 6 Defect structures and mechanical properties of materials irradiated by fusion neutrons Development of low activity vanadium-base alloys under fusion reactor environment . . 13 I. 7 I. 8 Radiation damage of ceramics as fusion reactor materials 15 I. 9 Irradiation effects of low activation steels 17 I.10 Permeation of tritium through amorphous alloy 19 I.11 Physical and chemical processes of ion wall-materials interactions in the low energy range I.12 Reflection phenomena of particles during hydrogen recycling process 23 I.13 Thermal shock and fatigue properties of coated fusion reactor materials 25 I.14 Crack extension in fusion reactor first wall components under combined damage of I.15 I.16

Group II: Environmental and Biological Effects of Tritium

II.	1	Variations of environmental tritium and their interpretation through the analysis	33
II.	2	Tritium concentration of different chemical species in the atmosphere in Fukuoka \ldots .	35
II.	3	Behaviour of environmental tritium as studied from the view points of hydrology and	
		meteorology	37
Π.	4	Tritium content of environmental waters from the Toyama region, Japan	39
II.	5	Sampling and measurement of environmental tritium in various forms	41
II.	6	New correction method of detection efficiency in low-level tritium measurement	
		by liquid scintillation counter	43

II. 7	Ecological behaviours of tritium in the vicinity of nuclear facilities in Japan	45
II. 8	Tritium concentrations in environmental samples around Tokai	47
II. 9	Tritium content of environmental water in Aichi prefecture	49
II.10	Environmental behaviour of tritium around our institution for the use of non-sealed	
	radioisotopes	51
II.11	Nuclear debris from chernobyl observed in Osaka	53
II.12	Tritiugenic ³ He in ground waters from Tonami plain	55
II.13	Environmental Tritium in southewest islands, Japan	57
II.14	Diffusion of tritiated water in soil	59
II.15	Oxidation of tritium gas in environment – Producing reaction of tritiated water –	61
II.16	Internal radiation of normal Japanese with tritium in natural environment	63
II.17	Fallout ³ H ingestion in Akita, Japan	65
II.18	The transfer of tritium in the environment	67
II.19	Biomedical effects of tritiated water	69
II.20	Induction of neoplastic transformation and chromosome aberration by tritiated water	
	in golden hamster embryo cells	73
II.21	Transformation of Syrian hamster embryo cells exposed to tritiated water	75
II.22	Chromosomal responses to low level tritium	77
II.23	Development of a cytogenetic monitoring system for human exposure to tritium using	
	peripheral lymphocyte cultures	79
II.24	Genetic RBE of tritiated water	81
II.25	Induction and repair of DNA breakage induced by tritiated water in cultured	
-	mammalian cells	83
II.26	Tumorigenicity of tritium water on mice	85
II.27	Tritium effects on mouse intestinal cells	87
II.28	Mechanism and detection of hemopoietic injury by tritiated water	89
II.29	Effect of tritiated water on hematopoietic tissue	91
II.30	Effect of tritiated water on the development of the fertilized egg of the mouse $\ldots \ldots$	93
II.31	Somatic effects of tritium	94
II.32	Uptake studies of tritium into body and evaluation of it's biological effects	96
II.33	Metabolism of organically bound tritium and a model for the estimation of accumulated	
	dose due to internally deposited tritium	98
II.34	Urinary tritium as an indicator of tritium metabolism in the body	100
II.35	Tritium content in tissue free water of Japanese body	103
II.36	A nationwide tritium concentration survey in TAP water in Japan	105
II.37	Dose estimation in rat exposed orally to tritiayed thymidine	107
II.38	Metabolism and excretion of tritium from tritium gas and tritiated water	109
II.39	Oxidation of tritium gas by microbes	111

II.40	Dosimetry of tritium simulator
II.41	Tritium simulator, a low dose rate gamma irradiation apparatus and biological studies of
	tritium effects
II.42	Correction factor of absorbed dose of tritiated water for normal human fibroblasts 117
II.43	In vivo somatic mutation in mice induced by tritium
II.44	Specific ability of organ tissues to release tritiated water (HTO)
II.45	Biological effects of tritium on cultured mammalian cells and small animals
II.46	Effect of tritiated water on human bone marrow CFU-F and CFU-E colony
	formation
II.47	The effect of tritiated water on bone marrow chromosomes of human
II.48	Effect of tritiated water on germ cells. $-A$ comparison with tritium simulation using
	mouse newborn oocyte death as index.—
II.49	The teratogenic effects of tritiated water and tritium simulator on rat embryos 131
II.50	Killing effects of tritium water in human thyroid cells and RBE
II.51	Molecular structure of damage in nucleic acid induced by tritiated water
II.52	Some factors of DNA damage by tritiated water
II.53	Low dose rate effect of tritium beta-ray on transforming DNA of M13 mp10 phage 139
II.54	Chemical effects of β -decay in tritium labelled uracil in oxygenated aqueous
	solution

Group III: Fundamentals of Reactor Plasma Control

III. 1	Fundamental researches on fusion plasma control (coordinating committee)
III. 2	Development of diagnostic techniques of implosion plasma
III. 3	Diagnostics on implosion process in an interaction of intense pulsed light-ion beam
	with target
III. 4	High accuracy neutron measurement in magnetic confinement system
III. 5	Atomic processes in laser-imploded plasmas
III. 6	Physics of spin polarized fusion reactions
III. 7	Transport and control on RF-heating plasmas
III. 8	Antennas and transmission systems for high power RF plasma heating
III. 9	Heating and control of plasma by Alfven waves
III.10	Development of Schottky diode detector/mixers for high temperature plasma
	diagnostics
III.11	Studies on the optimization of plasma confinement in external conductor systems 165
III.12	Mechanism of thermal barrier potential formation
III.13	Spectroscopic tomography system for measurement of visible radiation profile of
	plasma
III.14	Slow formation of field-reversed configuration plasma

III.15	Computer simulation and plasma modeling
III.16	Theory of elementary processes related to fusion research
III.17	Transport theory in fusion plasmas – Development of new theoretical method $\dots \dots 180$

Group IV: Superconducting Magnets

IV. 1	Basic aspect of R & D of superconducting magnet technology (The fourth group) 183
IV. 2	Evaluation of advanced superconductive magnet materials under fusion conditions \dots . 185
IV. 3	New method of stabilization for high-current density superconducting magnet 187
IV. 4	Development of advanced A15 type superconducting wires for high magnetic field 189
IV. 5	Microstructure of A15 type superconductors and its influence on pinning force $\ldots \ldots 191$
IV. 6	Low temperature neutron irradiation effects on structure and property of super-
	conducting magnet materials
IV. 7	Mechanical properties of structural materials for superconducing magnets
	(Developments of standard test methods at cryogenic temperature)
IV. 8	Electromagnetic properties of Nb ₃ Sn superconducting conductors
IV. 9	Prediction of the quench of superconducting magnets
IV.10	Pulsed heat transfer in superfluid helium
IV.11	Monitoring of superconducting magnets using ultrasonic resonance
IV.12	Stability and A.C. losses of fine Nb ₃ Sn multifilamentary superconductors

Group V: Fusion Reactor Blanket Engineering

V. 1	Promotion of fusion reactor blanket engineering
V. 2	Benchmark experiments on neutron and induced gamma-ray transmission and
	development of calculational methods
V. 3	Magneto-hydro-dynamic, thermal and structural studies on liquid metal lithium
	cooling of fusion reactors
V. 4	In-situ tritium release from branket candidiate-materials
V. 5	Hydrogen isotope separation system with permeation through sintered Ni-Al alloy
	diaphragms
V. 6	Prediction of long-term creep curves under service condition of nuclear fusion
	reactor
V . 7	Sodium mist cooling a hot surface in compact cassette toroid reactor
V. 8	Thermomechanical behaviour of first wall materials irradiated by laser
V. 9	Breeding and recovery of tritium from the CTR blanket materials
V.10	Development of flaw detection and repairing system for a fusion reactor first wall 225
V .11	Experimental studies on 14 MeV neutron induced activation through secondary charged
	partice reaction

V.12	High temperature rupture strength of first wall materials in fusion reactor
	(high temperature strength of ceramics coated wall materials)
V.13	Control of particle size and sintering in lithium double oxides $\ldots \ldots \ldots 230$
V.14	Hydrogen permeabilities of iron-coated niobiumu and zirconium membranes in liquid
	lithium
V.15	DT- and fast neutron capture gamma-ray profile of first wall materials $\ldots \ldots 234$
Group Vi	: Design and Evaluation of Fusion Reactor
VI . 1	Design and evaluation of fusion reactors (coordinating committee)
VI. 2	Plasma production and conditioning technology in Heliotron-E, Gamma-10 and

VI. 4	This is production and conditioning cosmology in Henotron 2, Summa To and
	Gekko-XII facilities (collaboration with established small groups)239
VI. 3	Evaluation of structural strength of fusion reactor first wall
VI. 4	Conceptual design of a reverse field pinch fusion power reactor
VI. 5	Tritium plasma experiment: Plasma driven permeation
VI. 6	Investigation, analysis and evaluation of fusion safety research
VI. 7	Influence of traps and repellers on permeation of hydrogen isotopes in aluminium
	alloys
IV. 8	Ignition and burn characteristics of advanced-fuel fusion reactors