目次

0	はじめに							
	0 - 1	MANUALの目的		1				
	0 - 2	何を対象にするか		3				
1	資源·経済ASSESSMENT							
	1 - 1	ENERGY ANALYSIS		8				
	1 – 2	ENERGY比の求め方 - STARFIREを例として		1 2				
	1 - 3	詳しい概念設計のない場合 - HIBLIC-Iを例として	• •	1 5				
	1 - 4	簡易手法 — COMPACT CASSETTE炉を例として	• •	1 7				
	1 - 5	ENERGY ANALYSIS の精度と感度		2 0				
	1 - 6	核融合炉と資源制約	• •	2 2				
		4						
2	RISK ASSESSMENT							
	2 - 1	SAFETY ANALYSIS		2 5				
	2 – 2	RISKの要因と誘因		2 9				
	2 - 3	核融合炉の事故の特徴 - 核分裂炉との比較	• •	2 9				
	2 - 4	STRUCTURAL RISK の評価		3 1				
	2 - 5	誘導放射能RISKの評価	• •	3 7				
	2 - 6	TRITIUM RISKの評価	• •	4 1				
3	環境ASSESSMENT							
	3 – 1	環境ASSESSMENTの目的と対象		6 0				
	3 – 2	立地条件の評価	• •	6 6				
	3 - 3	新立地方式		7 2				

4	社会・政策ASSESSMENT					
	4 -	1 社会・政策ASSESSMENTの目的	•	•	7	4
	4 -	2 ENERGY政策における評価 - 実用炉の評価	٠	•	7	5
	4 -	3 総合評価	•	•	7	9
	4 -	4 研究開発戦略における評価 - 実証炉の評価	٠	•	8	1
APPENI	DIX	1 ENERGY INTENSITY DATABASE				
	1	EI DATABASE の構造	•	•	9	3
	2	素材のEI	•	•	9	4
	3	重要材料のEI	٠	•	9	5
		(1) 特殊鋼類 (2) 超伝導材				
	4	Lioei	•	•	9	6
		(1) 鉱石・かん水からの抽出 (2) 温泉水からの抽出				
		(3) 6Li の濃縮(ION 交換法,水銀AMALGAM 法)				
	5	炉設備以外のEI	•	• 1	0	3
APPEN	DIX	2 ENERGY ANALYSIS の計算機CODE				
	1	計算機CODEの概要	•	• 1	l 0	8
	2	外部仕様	•	• 1	l 0	9
	3	手計算によるENERGY ANALYSIS	•	• 1	l 1	2
APPEN	DIX	3 核融合炉に使用される希少資源の評価				
	1	はじめに	•	•]	1 3	4
	2	リチウム (Li)	٠	•]	1 3	4
	3	ベリリウム (Be)	٠	•]	1 5	3
	4	ニオブ (Nb)	٠	•]	1 5	7
	5	モリブデン (Mo)	•	•]	1 6	2
	6	わが国におけるLi,Be,Nb,Mo の需給状況	•	•	1 6	7

APPENDIX 4 SAFETY ANALYSIS の知識BASE \cdot \cdot 177 1 はじめに \cdot \cdot 177 2 PSL \cdot 179 3 核融合炉安全評価のための知識ベース・システム \cdot \cdot 1 8 1 ソース・リスト \cdot 196 実行例 APPENDIX 5 核融合実証炉の環境ASSESSMENT \cdot 198 1 事業の目的及び内容 \cdot · 2 0 3 2 環境影響評価の目的及び構成 3 環境項目の選定 \cdot · 2 0 4 4 トリチウム放出に係る環境影響評価 \cdot 206 \cdot · 2 1 6 5 温排水に係る環境影響評価

執筆

第0章	島津康男(名古屋大学理学部)
第1章	武内寿久祢(東京大学工学部)
	永井亨・島津康男 (名古屋大学理学部)
第2章	浦部達夫(名古屋大学大型計算機センター)
	長谷川明生・福井弘道・永井亨・島津康男(名古屋大学理学部)
第3章	吉川博也(筑波大学社会工学系)
	橘爪泰夫(センチュリー・リサーチ・センター)
	山田秀之(野村総合研究所)
	島津康男
第4章	島津康男

APPENDIX 1 永井亨

AOOEBDIX 2 永井亨