CONTENTS

Group I:	Reactor Materials and Plasma-wall Interactions	
I. 1	Fusion reactor materials and plasma-wall interactions	1
I. 2	The effects of heavy irradiations on the ferritic stainless steels	3
I. 3	The effects of heavy irradiations on the ferritic stainless steels	
	– Simulation irradiation studies	5
I. 4	- Radiation-induced segregation and dual irradiation behavior in stainless steels	7
I. 5	- Damage structural behaviour by electron irradiation of Mn-Cr austenitic stainless steels	9
I. 6	- The effect of ion irradiation on microstructure of ferritic stainless steels	11
I. 7	- Heavy irradiation effects of the ferritic/martensitic stainless steels	
	(Effects of applied stress on the microstructure evolution)	13
I. 8	- Effect of cascade damage on the formation of defect clusters	15
I. 9	- Instrumented charpy impact tests for austenitic and ferritic steels	17
I.10	- Damage recovery in electron-irradiated Fe-Ni-Cr alloys	18
I.11	- Behavior of hydrogen and helium	19
I.12	- Fundamental processes of damage evolution in neutron irradiated metals	21
I.13	- The change of microstructure of JFMS by different heat treatment	23
I.14	- Change in microstructure and toughness of ferritic-martensitic stainless steel during	
	long-term aging	25
I.15	- The effects of alloying elements on the void-swelling in heavily irradiated materials	
	(Microchemical segregation in 304 stainless steels during electron irradiation)	27
I.16	Irradiation effects on the mechanical properties of materials	29
I.17	Irradiation effects on the mechanical properties of materials	
	- Tensile strength property of miniaturized specimen of type 316 austenitic stainless	
	steel and helium injection effect on it	31
I.18	- Effect of irradiation on strength of ferritic steels	33
I.19	- High cycle fatigue properties of the type 316 stainless steel	35
I.20	- Correlation between microstructure evolution and mechanical property change	37
I.21	- Impact strength of ferritic steel using small test piece	39
I.22	- Application of miniature sample testings to irradiated materials	41
I.23	- Editing of a fusion reactor materials database to induce a phenomenological relation	
	on several mechanical properties	43
I.24	- Irradiation creep of 316 stainless steel	44
I.25	Defect structures and mechanical properties of materials irradiated with fusion neutrons	
	from RTNS-II	46
I.26	Effect of proton irradiation on the embrittlement of HT-9 steel	48
I.27	Mechanical properties and irradiation effects on ferritic steels for fusion reactor walls	50

I.28	Development of high purity aluminum alloys for a fusion reactor material with low	
	radio activity	52
I.29	Particle and energy balance in hydrogen recycling in fusion reactor materials	54
I.30	Particle and energy balance in hydrogen recycling in fusion reactor materials	
	- Contribution of the surface on the synergestic effects in plasma-wall interaction \ldots	56
I.31	- Synergestic effect on hydrogen trapping and detrapping	58
I.32	- Isotope effect for desorption of hydrogen, deuterium and tritium implanted into	
	pyrolytic graphite	60
I.33	- Surface effect on tritium permeation through SUS-316 stainless steel	62
I.34	– Thermal desorption of deuterium and helium from ion irradiated graphite	64
I.35	- A few collision approach of near-threshold ion-induced desorption	66
I.36	$-$ Plasma surface interaction in low-Z compound materials with hydrogen isotope ions \ldots	68
I .37	Retention of hydrogen implanted into SiC and TiC crystals	71
I.38	Analytical methods for material transport phenomena between solid surface layers and	
	gases during hydrogen recycling process	73
I.39	Analysis of the plasma-driven hydrogen permeation of the first wall in fusion devices	75
I.40	Plasma wall interactions of long burn fusion devices	77
I.41	Hydrogen embrittlement of SUS 316 (AISI 316) austenitic stainless steel weldments	79
1.42	Development and evaluation of ceramic materials for fusion reactors	81
I.43	Development and evaluation of ceramic materials for fusion reactors	
	- Thermal shock testing of dense SiC by water-quenching	82
I.44	- High temperature properties of C/C composite	84
I.45	– Thermal conductivity of reaction sintered ${\rm Si}_3N_4$ at high temperatures $\ldots\ldots\ldots\ldots$	86
I.46	- Radiation damage in oxide and carbide ceramics	88
I.47	$-$ Surface erosion of substoichiometric titanium carbide under high energy ${}^{4}\text{He}^{+}$ ion	
	bonbardment	90
I.48	– Preparation and properties of chemically vapor deposited B_4C	92
I.49	- Effects of neutron irradiation on SiC fiber	94
I.50	- Radiation behaviour of low-Z ceramics	96
I.51	– Characterization of Ar^+ -ion irradiated alumina coatings	98
I.52	Diffusion bonding between metals and ceramics under high pressure	100
I.53	Thermal fatigue test of low-Z coating material	101
I.54	Bonding of ceramics to metal surfaces using high-pressure bonding process	103
I.55	Fast neutron and ion irradiation effects on polymers and organic composites for fusion	
	reactors	105