CONTENTS

Preface

Organization

Research Summaries

Group I: Reactor Materials and Plasma-wall Interactions

I. 1	Fusion reactor materials and plasma-wall interactions	1
I. 2	The effects of heavy irradiations on the ferritic stainless steels	3
I. 3	The effects of heavy irradiations on the ferritic stainless steels	
3	– Simulation irradiation studies	5
I. 4	- Radiation-induced segregation and dual irradiation behavior in stainless steels	7
I. 5	- Damage structural behaviour by electron irradiation of Mn-Cr austenitic stainless steels	9
I. 6	- The effect of ion irradiation on microstructure of ferritic stainless steels	11
I. 7	- Heavy irradiation effects of the ferritic/martensitic stainless steels	
	(Effects of applied stress on the microstructure evolution)	13
I. 8	- Effect of cascade damage on the formation of defect clusters	15
I. 9	- Instrumented charpy impact tests for austenitic and ferritic steels	17
I.10	- Damage recovery in electron-irradiated Fe-Ni-Cr alloys	18
I.11	– Behavior of hydrogen and helium	19
I.12	- Fundamental processes of damage evolution in neutron irradiated metals	21
I.13	- The change of microstructure of JFMS by different heat treatment	23
I.14	- Change in microstructure and toughness of ferritic-martensitic stainless steel during	
	long-term aging	25
I.15	- The effects of alloying elements on the void-swelling in heavily irradiated materials	
	(Microchemical segregation in 304 stainless steels during electron irradiation)	27
I.16	Irradiation effects on the mechanical properties of materials	29
I.17	Irradiation effects on the mechanical properties of materials	
	- Tensile strength property of miniaturized specimen of type 316 austenitic stainless	
	steel and helium injection effect on it	31
I.18	- Effect of irradiation on strength of ferritic steels	33
I.19	- High cycle fatigue properties of the type 316 stainless steel	35
I.20	- Correlation between microstructure evolution and mechanical property change	37
I.21	- Impact strength of ferritic steel using small test piece	39
I.22	- Application of miniature sample testings to irradiated materials	41
I.23	- Editing of a fusion reactor materials database to induce a phenomenological relation	
	on several mechanical properties	43
I.24	- Irradiation creep of 316 stainless steel	44
I.25	Defect structures and mechanical properties of materials irradiated with fusion neutrons	

	from RTNS-II	46
I.26	Effect of proton irradiation on the embrittlement of HT-9 steel	
I.27	Mechanical properties and irradiation effects on ferritic steels for fusion reactor walls	
I.28	Development of high purity aluminum alloys for a fusion reactor material with low	
	radio activity	52
I.29	Particle and energy balance in hydrogen recycling in fusion reactor materials	54
I.30	Particle and energy balance in hydrogen recycling in fusion reactor materials	
	- Contribution of the surface on the synergestic effects in plasma-wall interaction	56
I.31	- Synergestic effect on hydrogen trapping and detrapping	58
I.32	- Isotope effect for desorption of hydrogen, deuterium and tritium implanted into	
	pyrolytic graphite	60
I.33	- Surface effect on tritium permeation through SUS-316 stainless steel	62
I.34	– Thermal desorption of deuterium and helium from ion irradiated graphite	64
I.35	- A few collision approach of near-threshold ion-induced desorption	66
I.36	– Plasma surface interaction in low-Z compound materials with hydrogen isotope ions \ldots	68
I.37	Retention of hydrogen implanted into SiC and TiC crystals	71
I.38	Analytical methods for material transport phenomena between solid surface layers and	
	gases during hydrogen recycling process	73
I.39	Analysis of the plasma-driven hydrogen permeation of the first wall in fusion devices	75
I.40	Plasma wall interactions of long burn fusion devices	77
I.41	Hydrogen embrittlement of SUS 316 (AISI 316) austenitic stainless steel weldments	79
I.42	Development and evaluation of ceramic materials for fusion reactors	81
I.43	Development and evaluation of ceramic materials for fusion reactors	
	- Thermal shock testing of dense SiC by water-quenching	82
I.44	- High temperature properties of C/C composite	84
I.45	– Thermal conductivity of reaction sintered Si_3N_4 at high temperatures $\ldots \ldots \ldots$	86
I.46	- Radiation damage in oxide and carbide ceramics	88
I.47	– Surface erosion of substoichiometric titanium carbide under high energy ${}^{4}\mathrm{He}^{+}$ ion	
	bonbardment	90
I.48	– Preparation and properties of chemically vapor deposited B_4C	92
I.49	- Effects of neutron irradiation on SiC fiber	94
I.50	- Radiation behaviour of low-Z ceramics	96
I.51	– Characterization of Ar^+ -ion irradiated alumina coatings	98
I.52	Diffusion bonding between metals and ceramics under high pressure	100
I.53 -	Thermal fatigue test of low-Z coating material	101
I.54	Bonding of ceramics to metal surfaces using high-pressure bonding process	103
I.55	Fast neutron and ion irradiation effects on polymers and organic composites for fusion	
	reactors	105

Group II: Science, Technology and Biological Effects of Tritium

II. 1	Cooperative works on fundamental works on tritium technology, behavior of tritium in
	environment, and biological effects of tritium
II. 2	Study group meeting: impairment of plasma diagnostic devices due to tritium and
	obviation techniques
II. 3	The development of new techniques for measurement, storage and transfer of high
	activity tritium
II. 4	Seasonal and regional variation of environmental tritium level
II. 5	Microscopic behavior of tritium in ceramics
II. 6	Tritium high detection sensitivity gas monitor
II. 7	Tritium pellet injection in a toroidal plasma
II. 8	Tritium storage in and release out of spongy titanium
II. 9	Detection and separation of hydrogen isotopes with drift tube technique
II.10	Partial pressure measurement of tritium oxide by infrared spectroscopy 125
II.11	High pressure DT fill and non-destructive fuel assay for laser fusion target
II.12	Contamination of ionization chamber due to exposure to tritium
II.13	Hydrogen isotope separation by host-guest chemistry
II.14	Laser isotope separation of tritium
II.15	Isotope fractionations by chromatographic techniques
II.16	Separation of hydrogen isotopes by permeation through metal plate prepared by powder
	metallurgical technique
II.17	Hydrogen isotope effects at desorption of water from desiccants-III
II.18	Chemical effects of β -decay in tritium labelled cytosine in oxygenated aqueous solution \cdot 141
II.19	Tritium permeation through rubber under low partial pressure
II.20	Effect of γ -irradiation on gas permeability of nitrile rubber $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 145$
II.21	Permeation of hydrogen isotopes and effect of ion bombardment in Johnson-Matthew
	iron
II.22	Hydrogen depth profiles in reactor materials damaged by He-ion irradiation $\dots \dots 149$
II.23	Distribution of tritium in pure aluminum and an aluminum-magnesium-silicon alloy \dots 151
II.24	Synthesis and properties of lithium double oxides from organic metal compounds $\dots \dots 153$
II.25	Tritium recovery from neutron irradiated lithium oxide pellets
II.26	Tritium breeding and thermal properties of LiPb material for fusion reactor blankets 157
II.27	In-situ tritium release from CTR solid blanket materials under neutron irradiation
	at high temperatures
II.28	Absorption breakthrough of hydrogen isotopes in inert gas mixture with zirconium-nickel
	alloy particle bed
II.29	Permeation of hydrogen through iron-coated niobium membrane
II.30	Plasma driven permeation using RF-discharge in a pyrex tube

II.31	Simulation of air detritiation operations by bench-scale experiment and computer	
	modeling	
II.32	Tritium detection using electret dosimeter	
II.33	Tritium measurement by photon counting	
II.34	Calorimetric measurement of tritium in high-activity	
II.35	An explanation of the tritium memory-effect	175
II.36	Characteristics of cryosorption pumping of hydrogen isotopes on synthetic zeolite and	
	activated carbons	
II.37	Safety confinement of tritium	179
II.38	Attachment of membrane separator for removal of radon to ionization chamber installed	
		181
II.39	Tritium content of rain and river water in Aichi Prefecture	183
II.40	Tritium in the environment around and an institution for the usage of radioisotopes	
II.41	Tritium content of environmental waters from the Toyama region, Japan	187
II.42	Tritium concentration in environmental water and pine needles in the vicinity of nuclear	
	power plants in Fukui Prefecture	189
II.43	Tritium measurement by helium isotopic analysis	191
II.44	Measurements of tritium concentrations in the atmosphere and precipitations	193
II.45	Environmental tritium considerations in view of design and operation of fusion facilities	
	– Database development and methods –	195
II.46	Environmental tritium in the vicinity of nuclear facilities in Japan	
II.47	Observation and calculation of such and done sitism of triticated and	199
II.48	Tritium concentrations in atmosphere, drinking water, river water and rain water around	
	Tokai	201
II.49	Variations of tritium concentration in the structure and taken and	203
II.50	Tritium level in tap water and in urine in community population	205
II.51	Biological effects of tritium (Summary)	207
II.52	Genetic effects of tritium	207
II.53	Somatic effects of tritium	209
II.54	Oncogenic transformation of golden hamster embryo (GHE) cells exposed to tritiated	211
	water (HTO)	213
II.55	Somatic effects of tritium	215
II.56		217
II.57	Carcinogenicity of tritiated water (HTO) in mice (An interim report)	
II.58	The effect of tritiated water on hematopoietic tissue	
II.59	Development of the monitoring system for human exposure to tritium: chromosome	
	aberrations in human G_0 lymphocytes exposed to HTO	223
II.60	Mechanism of hematopoietic disorders by tritium compounds in men	

II.61	Intake of tritiated water into mouse gonad cells 227
II.62	The system of the safety handling of tritiated water in biological experiments 230
II.63	Expiratory air monitor
II.64	Uptake studies of tritium into animals 234
II.65	Effects of tritium beta-rays on DNA
II.66	Microdosimetry of tritium beta rays – Mean dose in cells stored in tritiated water $\dots 238$
II.67	The free radical-induced dimemerization of enzymes in aqueous solutions
II.68	Mutational specificity of tritium mutagenesis in E. coli
II.69	Effects of tritium on chromosomes
II.70	Genetic effects of tritium in the somatic and germ cells of mice
II.71	Effects of tritiated water on the organization of chromatin alkaline elution assay and
	effects of H_2O_2 246
II.72	Oxidation of tritium gas in the body 248
II.73	Cell death induced by tritiated water in mouse intestine
II.74	Development of tritium simulator – Low dose and low dose rate irradiation apparatus $\therefore 252$
II.75	Cellular effects of HTO on yeast cells 254
II.76	Effects of tritiated water on the DNA of plasmid PBR 322 256
II.77	Incorporation of tritium into the biomolecules in the organs of newborn mice and
	evaluation of their internal absorbed dose 258
II.78	Tritium metabolism and estimation of accumulated dose in newborn mice 260
II.79	Effect of tritiated water on the development of fertilized eggs of mice
II.80	Effect of tritiated water on growth of E. coli NG30 and a specific oxidative species
	produced in tritiated water

Group III: Fundamentals of Reactor Plasma Control

III. 1	Fundamental researches on fusion plasma control (Coordinating committee) 267
III. 2	Beam probe-laser spectroscopy for measurements of impurities in high temperature
	plasmas
III. 3	Development of fundamental techniques on charged beam drivers for inertial
	confinement fusion
III. 4	Antennas and related problems for wave heating in plasmas 275
III. 5	Compact and high β toroidal systems $\ldots \ldots 277$
III. 6	Development of schottky diode detector/mixers for high temperature plasma diagnostics . 279
III. 7	Optical measurement of high- β plasma with a high temporal- and spatial resolution 281
III. 8	Development of a D_2O submillimeter laser for ion temperature measurements of high
	temperature plasmas
III. 9	Time-resolved observations of electron energy in REB-excited gases 285
III.10	Development of magnetic pellet injector and plasma imaging diagnostics for inertial

	fusion
III.11	Theoretical research on fundamentals of pellet design
III.12	Improvement of the operational performance for the E-beam excited HF and KrF lasers $\cdot 291$
III.13	Development of high frequency gyrotrons and gyro-peniotrons
III.14	Production and controlling of high energy particles in wave heating of plasma 295
III.15	Combination heating and confinement control in fusion plasmas 297
III.16	New Antenna for wave heating
III.17	Formation of tandem potential and thermal barrier
III.18	Improvement of life time of FRC plasma by the use of translation method
III.19	Cooperative development of computer simulation codes for nuclear fusion plasma
	research
III.20	Design bases for helical axis toroidal device

Group IV: Technology of Superconducting Magnet

IV. 1	Basic aspects of R & D of superconducting magnet technology (The fourth group) $\dots 309$
IV. 2	Superconducting A15 compound conductors
IV. 3	Dynamic performance of the pool boiling heat transfer to liquid helium4 313
IV. 4	Basic electromagnetic properties of superconductors
IV. 5	Application of composite theory to structural analysis of superconducting magnets \dots 317
IV. 6	Acoustic emission and disturbances in superconducting magnet
IV. 7	Generation of chevrel-phase superconductors with ultrahigh critical magnetic field $\ldots 321$
IV. 8	Effects of reactor irradiation on insulating materials for superconducting magnet 323
IV. 9	Structural materials for superconducting magnets in fusion reactor
	(Fracture toughness and stress-strain behavior at cryogenic temperature) 325
IV.10	Forced flow cooling of a pulsed superconducting magnet and its control
IV.11	Performance study on superconducting magnet materials under thermonuclear fusion
	conditions – Tests and evaluation for near term fusion machine –
IV.12	Development of Nb ₃ Sn superconducting wires by <i>in-situ</i> method
IV.13	Cooling system of superconducting magnets with superfluid helium 333
IV.14	Quench phenomena and protections in superconductivity
IV.15	Reinforced composite Nb ₃ Sn multifilamentary wires and their stress effect $\ldots \ldots 337$
IV.16	Microstructure of A15 type superconductors and their influence to pinning force 339
IV.17	Electrical insulations used in superconducting magnets for a large fusion device $\ldots 341$
IV.18	A.C. losses and stability of a fine NbTi multifilamentary composite conductor 343

Group V: Fusion Reactor Blanket Engineering

V . 1	Fusion reactor blanket engineering	345
V . 2	Basic experiments on tritium breeding and neutron multiplication	347

V. 3	Developments of fusion neutron dosimetry techniques
V. 4	Neutron induced gamma-ray production from fusion reactor materials
V . 5	Decreasing of induced activity of a fusion reactor and environmental radiation 355
V . 6	Measurement of secondary neutron data (DDX) and analysis of knock-on atom spectra
	for fusion reactor materials
V . 7	Sodium mist cooling for a hot surface in a fusion reactor
V. 8	Cooling of fusion reactor components by water flow in narrow channel $\ldots \ldots 361$
V. 9	Lifetime evaluation of a first wall for a fusion reactor
V .10	Gas cooling heat transfer in a coolant duct of first wall with non-uniform and/or
	unsteady high heat flux
V.11	Gas cooling heat transfer in a coolant duct of first wall with non-uniform and/or
	unsteady high heat flux $-$ Non-uniform and steady heat transfer in a non-circular cross
	section duct
V .12	Thermal behaviors of a gas-cooled channel with non-uniform and transient heat
	generation
V.13	Strength of blanket materials under the influence of heavy neutron irradiation and high
	temperature
V.14	MHD effects of liquid lithium flow under transverse magnetic field – Pressure drop in
	square tube and temperature fluctuation in annular channel $-$
V .15	Fracture strength in elevated temperature of the blanket materials of fusion reactor $\dots 377$
V .16	Radiation damage studies on fusion materials and other utilizations by using rotating
	target neutron source II

Group VI: Design and Evaluation of Fusion Reactor

VI . 1	Fundamentals of fusion reactor design and assessment (Coordinating committee) $\ldots 381$
VI . 2	Magnetically confined advanced fuel fusion reactor
VI. 3	Science assessment of nuclear fusion reactor
VI. 4	Development of new methods for fusion theory 387
VI. 5	Fusion reactor materials database as an interface between reactor design and materials
	development
VI. 6	Neutronics optimization for fusion reactor blanket/shield
VI . 7	Conceptual design of tandem mirror fusion power reactor
VI. 8	Evaluation of structural strength of fusion reactor first wall