CONTENTS

Preface

Organization

Research Summaries

Group I : Reactor Materials and Plasma-wall Interactions

I. 1	Fusion reactor materials and plasma-wall interactions	1
I. 2	The effects of heavy irradiations on the ferritic stainless steels .	3
I. 3	The effects of heavy irradiations on the ferritic stainless steels	
	Simulation irradiation studies	5
I. 4	The effects of heavy irradiations on the ferritic stainless steels	
	Radiation-induced segregation, phase change and He effect	7
I. 5	In situ observation of radiation damage and simulation correlation .	9
I. 6	Formation mechanism of voids and bubbles	11
I.7	The effects of heavy irradiations on ferritic stainless steels	•
	Behavior of hydrogen and helium	13
I. 8	Radiation effects on the characteristics of steels	15
I. 9	Change in microstructure and toughness of ferrite-martensite	
	stainless steel during long-term aging	17
I.10	Cascade damages and microstructure changes induced by irradiations	
	with heavy ions and reactor neutrons	19
1.11	Evolution of radiation induced microstructure under stress	20
I.]2	Evolution of cavity microstructure in dual-ion irradiated iron	
	alloys	22
I.13	Effects of radiation damage on mechanical behavior of nuclear	
	fusion materials	24
I.14	A study of irradiation creep and the establishment of miniature	
	sample testing technique	27
I.15	Development of ferritic steels for first wall of fusion reactors :	32
I.16	In situ measurements of fatigue process under irradiation	34
I.17	Radiation effects on the mechanical properties of materials	
	Correlation between microstructure and mechanical properties	
	examined with micro-specimens	36
I.18	Impact strength studies using small test pieces	38
I.19	Development of miniature sample testing method for irradiated	
	materials	
I.20	Development of modeling soft ware for irradiation effects	
I.21	Irradiation creep of 20% cold worked 316 stainless steel	44

I.22	Effect of proton irradiation on the embrittlement of HT-9 steel	46
I.23	Effect of additional elements on the void swelling and on the	
· .	mechanical properties at high temperature after the irradiation	48
I.24	Ion simulation of phase transformations of ferritic steels during	
	neutron irradiation	50
I.25	Damage evolution of heavily-irradiated metals and alloys with	
	ions and neutrons	51
I.26	Accumulation mechanisms of hydrogen isotopes and radiation-induced	• •
	lattice defects on the first wall of a fusion reactor	53
I.27	Particle and energy balance in hydrogen recycling in fusion	
	reactor materials	55
I.28	Nuclear reaction analysis of deuterium on stainless steel surface	57
I.29	Ion-induced desorption of atoms on the surface	59
I.30	In situ surface analysis under hydrogen ion bombardment	61
I.31	Thermal desorption of deuterium implanted into graphite	63
I.32	Isothermal annealing test of ion irradiated titanium	65
1.33	Diffusion coefficient of tritium in SUS 316 stainless steel	67
I .34	Computer studies on energetic hydrogen behavior in solids and	
	modeling of hydrogen recycling phenomena	69
I.35	Plasma surface interactions of low-Z compound materials with	
	hydrogen isotope ions	70
I.36	Analytical methods for material transport phenomena between solid	
	surface layers and gases during hydrogen recycling process	72
I.37	Surface effects on hydrogen absorption and permeation through	
	first wall material	74
I.38	The effect of the plasma-surface interaction on the thermonuclear	
	plasma	76
I.39	Development and evaluation of ceramic materials for fusion reactors	78
I.40	Joining of dense silicon carbide	79
I.41	Strengthening of ceramic-metal interface	81
I.42	Development and evaluation of ceramic materials for fusion reactor	
	High temperature properties of C/C composite	83
I.43	Thermal conductivity measurement of ceramics at high temperatures	
	by transient hot wire method	85
I.44	Radiation damage in oxide and carbide ceramics	87
1.45	Irradiation effects and preparation of substoichiometric titanium	
	carbide coatings	89
I.46	Preparation and irradiation behavior of CVD-SiC	9 1

I.47	Effects of neutron irradiation on SiC fiber	93
I.48	Radiation behavior of low-Z ceramics	95
	Thermal fatigue test of low-Z coating material	
1.50	Bonding ceramics to metal surfaces using high pressure pressing	99
I.51	Fast neutron and ion irradiation effects on polymers and organic	
	composites for fusion reactors	101

Group II : Science, Technology and Biological Effects of Tritium

II. 1	Cooperative works on fundamental works on tritium technology,
	behavior of tritium in environment, and biological effects of
	tritium
II. 2	Study group meeting: On tritium handling in large scale fusion
۰.	experimental facilities I; Once through operation mode 105
II. 3	Study group meeting: On tritium handling in large scale fusion
	experimental facilities II; Recycle operation mode
11.4	Fundamental studies on tritium technology Breeding, recovery,
	and recycling 109
II. 5	Tritium-release behavior from irradiated lithium compounds 111
II. 6	Chemical effects of ${}^{6}Li(n, \alpha)T$ reaction
11.7	Formation and recovery of tritium compound in LiF single
	crystal irradiated by neutron 115
II. 8	Permeation of hydrogen isotopes through nickel by pressure
	oscillation method 117
II. 9	Hydrogen isotope effects at desorption of water from Desiccants-II 119
II.10	Thermomigration of tritium in Nb, Ta and Ti
II.11	Separation and analysis of the products of exchange reactions and
	recoil reactions of tritium 123
11.12	Synthesis of $[2-14C, 5-3H]$ cytosine using bromine and tritium gas . 125
II.13	Recovery of tritium by metal-chalcogenide laminated materials 127
II.14	Development of cryosorption pump for fusion vacuum system 129
II.15	Recovery of hydrogen isotopes in an inert gas in a zirconium
	particle packed bed 131
II.16	Detection and separation of hydrogen isotopes with drift tube
	technique
II .17	Tritium measurement by photon counting
II.18	Preparation of input to a data base of thermophysical properties
•	of tritium and tritium oxide
II.19	Fundamental studies on tritium technology Safety handling,

	permeation control and waste management —	139
11.20	Diffusion and solubility of tritium in various metals	141
11.21	Distribution of tritium in aluminum and aluminum alloys	143
II.22	Adsorption of tritiated water vapor by molecular sieve	145
11.23	Development of rubber materials having the excellent barrier	
	property of tritium gas	147
II.24	Infra-red spectra measurement of condensed hydrogen isotopes	149
II.25	Recovery and utilization of tritium-gas	151
II.26	Capture of recoil tritium by graphite	153
II.27	Permeation, diffusion and contamination of tritium	155
II.28	Development of DT fuel system for laser fusion target	157
II.29	Sorption and desorption of tritium on glove rubbers	
II.30	Safety confinement of tritium	161
11.31	Tritium breeding performance of blanket materials for fusion	
	reactors	163
II.32	Laser isotope separation of deuterium and tritium	165
II.33	Synthesis and properties of lithium double oxides as tritium	
	breader Synthesis of LiAlO ₂ by hydrolysis of metal alkoxides	167
II.34	Enrichment of tritium from hydrogen tritide by means of thermal	
	diffusion column combined with a catalyst	169
II.35	Isotopic enrichment of tritium by using host-guest chemistry	171
II.36	Tritium adsorption of reactor materials damaged by heavy-ion	
	irradiation	173
II.37	Behavior of tritium in ceramics	175
II.38	In situ decontamination of tritium adsorbed on secondary	
	electron multiplier and its application	177
II.39	Seasonal and regional variation of environmental tritium level	179
11.40	A background level survey for tritium over whole Japan	181
II.41	Tritium content of environmental waters from the Toyama region,	
	Japan	183
II.42	Environmental tritium considerations in view of design and	
	operation of fusion facilities — data base development and	
	methods	185
II.43	Distribution of tritiated species in the atmosphere	187
II .44	Ecological behaviors of tritium in the vicinity of nuclear	
	facilities in Japan	189
II.45	Variations of tritium concentration in precipitation, river water	
	and sea water around Tokai	191

11.46	Measurement of atmospheric tritium 193
II.47	Tritium in the environment around the nuclear plants in Fukui
	prefecture
II.48	Tritium content of rain and river water in Aichi prefecture 197
II.49	Control and measurement of tritium at an institution for the
	usage of radioisotopes
II.50	Biological effects of tritium
11.51	Genetic effects of tritium
II.52	Somatic effects of tritium
11.53	Effect of tritium on the cells and their constituents
11.54	Effects of tritium on DNA 209
II.55	Oncogenic transformation of golden hamster embryo (GHE) cells
	treated with tritiated water 210
11.56	Hematopoietic disorders by tritium compounds in men
II.57	The effect of tritiated water on hematopoietic tissue
11.58	Effects of tritium on the induction of recessive visible mutations
	in primordial germ-cells of silkworm embryos: The nature of
	β-ray-induced mutants
II .59	Microdosimetry of tritium beta-rays Influence of reference
	radiation on RBE of tritium beta-rays
II.60	Biological effects and RBE of tritium water in cultured mammalian
	cells
II.61	Effects of tritiated water on the induction of somatic mutations
	in higher plants
II.62	Uptake of tritiated compounds into male germ-cells and dose
	estimation of tritium
II.63	Incorporation, distribution and molecular behavior of tritium in
	higher organisms from tritium gas and tritiated water
II.64	Tritium transport in the aquatic food chain under the
	exponentially decreasing level of environmental tritium
II.65	Development of an <i>in vivo</i> germinal mutation detection system in
	mice 230
II.66	Effect of ³ HOH exposure on gene activity of <i>E. coli</i> plasmid 232
II.67	The system of the treatment of animals with tritiated water 234
II.68	Tritium-induced chromosomal and DNA damages, and their modification 236
II.69	Effects of tritiated water on the organization of chromatin 237
II.70	Effects of tritium beta-rays on DNA 239
II.71	Analysis of tonB-trp deletion mutations induced by X-rays and

	tritiated water in E. coli	241
11.72	Effects of tritium on DNA: Strand breaks	243
II.73	Development of the monitoring system for human exposure to tritium:	
· .	Chromosome aberrations human G _o lymphocytes exposed to HTO	245
II .74	Effects of HTO on yeast cells	
II.75	Acute effect of tritiated water (HTO) in mice: Patho-	
	hematological observations	249
II.76	Dose-rate effect on the tritium- β -induced alanine radical	
	formation at -196°C	250
11.77	Metabolism of tritium incorporated into suckling mice	252
11.78	Somatic effects of tritium	254
Group III	: Fundamentals of Reactor Plasma Control	
III. I	Fundamental researches on fusion plasma control	
	(Coordinating Committee)	257
III. 2	Beam probe-laser spectroscopy for measurements of impurities in	
	high temperature plasmas	259
III. 3	Development of Schottky diode detector/mixers for high	
	temperature plasma diagnostics	261
III . 4	Development of diagnostic techniques of inertial confinement	
	fusion plasma by using thermonuclear reaction particles	263
III. 5	Development of a D $_2$ O submillimeter laser pumped by an	
	injection-locked TEA CO ₂ laser	265
III. 6	Development of fundamental techniques on charged beam	
	drivers for inertial confinement fusion	267
III. 7	Some characteristics of heavy ion beam produced by	
	collective acceleration	271
III. 8	Growth of large size KDP single crystal for high power harmonic	
	generation in laser nuclear fusion	
III. 9	Theoretical research on fundamentals of pellet design	275
111.10	Comparison of HF chemical laser and KrF rare-gas-halide	
	laser performance	277
III.11	Development of polymer pellets for ICF fusion targets	279
III.12	Antennas and related problems for wave heating of plasmas	281
III.13	Selfmodulational instability in RF heated plasma	283
III .14	Development of negative hydrogen ion source	285
111.15	New antenna for wave heating	287
III.16	Compact and high β toroidal systems	289

III.17	Basic parameters for the design of toroidal device	
	with helical magnetic axis	291
III.18	Centralized development of computer simulation codes in	
	nuclear fusion research	293
111.19	Electrostatic energy conversion from charged particles	295
Group IV	: Technology of Superconducting Magnet	
IV. 1	Basic aspects of R & D of superconducting magnet technology	
	(The fourth group)	
IV. 2	Superconducting A15 compound conductors	
IV. 3	Improvement of high-field performance of in situ Nb ₃ Sn wires	301
IV. 4	Superconducting properties of Mo-B, Mo-P and Pd-Zr amorphous	
	alloys	303
IV. 5	Evaluation of fracture toughness of cryogenic structural	
	steels for superconducting magnet in fusion reactor	
IV. 6	Ternary superconductors with high critical magnetic field	
IV. 7	Pulse shielded superconductive magnetic energy storage	309
IV. 8	Electromagnetic properties of multifilamentary composite	
	superconductors under fast ramp-rate magnetic fields	310
IV. 9	High overall current density and high magnetic field	
	superconducting magnets cooled with pressurized superfluid helium .	312
IV.10	Development of technique for detection and analysis of acoustic	
	emission signals from superconducting magnets	314
10.11	Production of Al5 type superconducting filament by the method of	
	glass-coated melt spinning	316
IV.12	Microstructures of A15 type superconductors and their influence	•
	to pinning force	378
IV.13		
	cryogenic temperatures	
	Steady and unsteady boiling phenomena in liquid helium I	322
11.12	Development of V_3 Si superconductor with higher transition	
	temperature	324
17.16	Dynamics of nonequilibrium superconducting state induced by	
	high energy radiation	326
IV.17	Performance study on superconducting magnet materials under	
	thermonuclear fusion conditions	
111 20	Cryogenic material and radiation effects	328
11*18	Static and dynamic Fracture toughness testing of materials	

	for superconducting magnet	30
IV.19	Forced flow cooling of a pulsed superconducting magnet and	
	its control	32
IV.20	Development of Nb $_3$ Sn jelly-roll type superconducting wires by	
	internal diffusion in situ method 3	34
IV.21	Syntheses of quasi-stable A15 type superconductors and chevrel	
	type superconductors, and improvement of the critical current	
	density	36
11.22	Electromagnetic behavior of a new superconducting composite wire 3	38
IV.23	Dynamic performance of the pool boiling in liquid helium	40
IV.24	Electrical insulations used in superconducting magnets for	
	a large fusion device	42
Group V	: Fusion Reactor Blanket Engineering	
۷.۱	Fusion reactor blanket engineering 3	45
V. 2	Basic experiments on tritium breeding and neutron multiplication 3	47
V. 3	Dosimetry experiments for fusion reactor neutronics researches 3	49
٧.4	Measurement of neutron activation crosssection of fusion	
	reactor materials at 14.6 MeV 3	51
V. 5	Duct streaming of high-energy neutrons 3	53
V. 6	Measurements of secondary neutron data for fusion materials and	
	development of related transport code system	55
V. 7	14 MeV (n,p) reaction using a position sensitive counter-telescope	
	with large angular acceptance	57
۷.8	Cooling of tandem mirror fusion reactor components by water flow	
	in narrow channel	59
V. 9	Thermal behaviors of a gas-cooled channel with non-uniform and	
	transient heat generation	61
٧.10	Characteristics of studies on heat transfer and pressure drop of	
•	herium-lithium annular-mist flow under a transversal magnetic	
	field	63

V.15	Fracture strength in elevated temperature of the blanket materials	
	of fusion reactor	372
۷.16	Radiation damage studies on fusion materials and instrumentations	
	by using rotating target neutron source II	374

Group VI : Design and Evaluation of Fusion Reactor

VI.	1	Fundamentals of fusion reactor design and assessment (the sixth-	
		group sohkatsu-han)	377
۷ŀ.	2	Magnetically confined advanced fuel fusion reactor	381
۷I.	3	Science assessment of fusion power plant	
		(1) Resource economy assessment	383
۷I.	4	Development of new methods for fusion theory	390
۷I.	5	Materials data base as an interface between materials developments	
		and fusion reactor designs	393