Preface

CONTENTS

Organization

Research Summaries

Group I : Reactor Materials and Plasma-wall Interactions

I. 1	Fusion reactor materials and plasma-wall interactions	1
I. 2	Effects of alloying elements on the mechanical property variation	
	by neutron and ion irradiation	3
I. 3	Proton irradiation creep of an austenitic stainless steel	5
I. 4	Alloying effect on the properties of irradiated molybdenum	7
I. 5	In situ measurements of fatigue of SUS 316 under irradiation by	
	protons	9
I. 6	Effects of alloying elements on microstructure and mechanical	
	properties of newly developed ferritic steel	11
I. 7	Effect of alloying elements on high-temperature strength of	
	modified type 316 austenitic stainless steel	13
I. 8	Effects of alloying elements on strength characteristics of	
	irradiated ferritic steel	15
I. 9	Alloying effect on the fundamental process of irradiation creep	17
I.10	Materials design for the first wall	19
I.11	Irradiation creep by means of cyclotron	21
I.12	Stereoscopic observation of defect clusters in irradiated	
	titanium monocarbide ,	23
I.13	Materials performance under pulse composite stress in ICFR	25
I.14	Fundamental research of aluminum alloys as a material for fusion	
	reactor	27
I.15	The effects of alloying elements on the void swelling in heavily	
	irradiated materials	29
I.16	The effects of alloying elements on the void swelling in heavily	
	irradiated materialsCorrelation among micro-structures	
	irradiated by electrons and ions	31
I.17	The effects of alloying elements on the void swelling in heavily	
	irradiated materialsRadiation induced segregation and phase	
	change	33
I.18	The effects of alloying elements on the void swelling in heavily	
	irradiated materialsIn-situ observation of radiation damage	
	and simulation correlation	35
I.19	Formation of voids and bubbles in the first wall materials for	• -
	fusion reactor materials	37

I.20	The effects of alloying elements on the void swelling in heavily irradiated materialsFundamental process in the formation of	
	voids and blisters	40
I.21	The effects of alloying elements on the void swelling in heavily	10
1.5	irradiated materialsDefect structures and solute segregation	
	in heavily irradiated materials	42
I.22	The effects of alloying elements on the void swelling in heavily	
1	irradiated materialsRadiation damage in steels	44
I.23	The effects of alloying elements on the void swelling in heavily	•••
1120	irradiated materialsStability change of small precipitates	
	under irradiation	46
I.24	The effects of alloying elements on the void swelling in heavily	
	irradiated materialsMicrostructural evolution in dual-ion and/	
	or electron irradiated 316 SS with helium injection scheduling	48
I.25	Temperature and dose dependence of swelling in 10% and 20% cold-	
	worked type 316 stainless steels	50
I.26	Study of physical and chemical sputtering processes of low-z	
	compounds and alloys	52
I.27	AES-SIMS-XPS study of physical and chemical sputtering processes	
	of low-z compound materials	54
I.28	ISS investigation of surface phenomena of fusion materials	56
I.29	Physical and chemical properties of low-z compound thin films	
I.30	Molecular processes of the interaction of hydrogen atomic beam	
	with the surface layers of solids	61
I.31	The effect of the plasma-surface interaction on the thermo-	
	nuclear plasma	63
I.32	Kinetic studies of composition change of alloys by physical and	
	chemical sputtering	65
I.33	Hydrogen Absorption, permeation, and recycling of first wall	
	materials	67
I.34	Benchmark experiment for neutron transport through blanket and	
	shield of fusion reactors	
I.35	Transport of D-T neutrons through polyethylene and water	
I.36	Transport of D-T neutrons through concrete	
I.37	Development of response-function evaluation code systems (RECS)	/5
I.38	Adjustment of response matrix of NE-213 fast neutron spectro-	77
I.39	meter Experiment on D-T neutron streaming through cavity geometry	
1.05	Experiment on D-1 neutron streaming through cavity yeometry	19

I.40	Measurements of fundamental data for secondary emission neutrons	
	from blanket materials on fusion reactor	81
I.41	Photon production nuclear data of fusion reactor materials for	
	fast neutrons	83
I.42	Measurement of neutron double differential cross sections for	
	fusion reactor materials and development of related transport	
	code systems	85
I.43	Neutron dosimetry in neutron irradiation fields	90
I.44	Evaluation of weldability and joining properties on materials for	
	nuclear fusion reactor vessel	92
I.45	Evaluation of weldability for weld zone of high precision	
	joining	94
1.46	In-process measurement in high precision joining process	96
I.47	High precision welding, weldability and cutting	98
I.48	Weldability of molybdenum alloy and SUS 316 stainless steel	100
I.49	Microstructural evaluation of welds under fusion reactor environ-	
	ment	102
I.50	Metallurgical estimation of weldmants as first wall in fusion	
	reactor	104
I.51	Dynamic observation of welded materials by HVEM and their assess-	
	mentPhase transformations in NiTi shape memory alloys induced	
	by electron irradiation	107
I.52	Weldability of austenitic alloys	109
I.53	Control of welding stress and strain in structural members and	
	welded joint	111
I.54	Plasma spray coating of low-z ceramics on molybdenum	113
I.55	Development of coating technique for first wall of fusion reactor	
	and its evaluation	115
I.56	Ceramics for fusion reactor applications	117
I.57	Thermal conductivity of CF/FC composite	118
I.58	Bonding mechanism of ceramic coating and its improvements	120
I.59	Strength mechanism of ceramic/metal interfacial bonding	124
I.60	Low-z coating and its characterization (Annealing of TiC-316 SS	
	system)	124
I.61	Evaporation of amorphous Si_3N_4 -C composites prepared by chemical	
	vapor deposition	126
I.62	Joining of ceramics	128
I.63	Joining of dense silicon carbide by aluminum metal	130

Group $\,\,{\rm II}\,$: Science, Technology and Biological Effects of Tritium

II. 1	Cooperative works on fundamental studies on tritium technology	
	and biological effects of tritium	133
II. 2	Fundamental studies on tritium technologyBreeding, recovery, and	
	recycling	135
II. 3	Tritium release from neutron-irradiated intermetallic lithium-	
	aluminum	137
II. 4	Tritium-release behavior from irradiated lithium compounds	139
II. 5	Tritium permeation through amorphous metal Pd ₈₀ Si ₂₀ alloys	141
II. 6	Recovery and utilization of tritium gas	
II. 7	Enrichment of tritium in water by Al-alloys	145
II. 8	Isotope fractionations by high-performance liquid chromatography	147
II. 9	Laser isotope separation of deuterium and tritium	149
II.10	Separation and concentration of tritium by the palladium alloy	
	membrane	151
II.11	Equilibrium caracteristics on cryo-sorption of $H_2^{}, D_2^{}$ and He on	
	molecular sieve zeolites	153
II.12	Development of tritium gas handling faculty	155
11.13	Development of tritium concentration data acquisition system for	
	liquid scintillation counter	157
II.14	Detection of tritium by bremsstrahlung and fluorescent X-ray	
	counting	159
II.15	Hydrogen isotope effects at desorption of water from desiccants	161
II.16	Monitoring system for fusion reactor and tritium plant	163
II.17	Chemical interaction of tritium with wall substances in helium	165
II.18	Compiration and formulation of standard data of thermodynamic and	
	transport properties of tritium oxide (T ₂ 0)	167
II.19	Fundamental studies on tritium technologySafety handling,	
	permeation control, and waste management	169
II.20	Behaviors of hydrogen & it's isotopes (D, T) in metals containing	
	<pre>imperfections</pre>	171
II.21	Distribution of tritium in SUS 316 stainless steel	173
II.22	Storage of hydrogen into plasma-deposited silicon: New tritium seali	ng
	possibility	175
II.23	Safety confinement of tritium	177
II.24	Estimation on leakage of tritium gasFrom high-pressure	
	experiments on H ₂ , D ₂ and He gases	179

II.25	Hydrogen behavior in metals under radiation field and metal	
	corrosion by lithium	181
II.26	Tritium permeation under thermal gradient through Nb first wall	183
II.27	Tritium adsorption of reactor materials damaged by heavy-ion	
	irradiation	185
II.28	Permeation, diffusion, and solution of hydrogen isotopes in/through	
	organic materials	187
II.29	Basic study on diffusion and permeation of tritium in the solid	
	phase	189
II.30	Water vapor permeation through rubbers	
II.31	Development of rubber materials having the excellent barrier	
	property of tritium gas	193
II.32	Safety aspects of tritium waste	
II.33	Adsorption and desorption of tritium on secondary electron	150
		197
II.34	Application of channel electron multiplier to tritium containing	137
11.01	system	199
II.35	Development of DT fuel fill system for laser fusion target	
II.36	Studies of biological effects of tritium	
II.30 II.37	Cooperative study on biological effects of tritium beta-rays with	203
11.57		205
II.38	The system of the treatment of tritiated water in biological	205
11.50	· · ·	207
II.39	experiments	207
11.39	Cytogenotoxicity of tritium: Sister chomatid exchanges induced by tritiated water in mice	200
II.40		
	Genetic effects of tritium Microdosimetry of ³ H beta raysAnalysis of survival curves of	211
II.41		010
	bacteria in tritiated water	213
11.42	Calculation of cellular microscopic dose distribution from the	
	tritium β -ray	
II.43	Effects of tritium on the cells and their constituents	
II.44	Effects of tritium on DNA: Adenine radiolysis	219
II.45	Tritium distribution in environmental ecosystems in the vicinity	
	of certain nuclear facilities	221
II.46	Effects of low-dose irradiation from tritium labelled uridine on the	
	induction of somatic mutations in tradescantia	
II.47	Somatic effects of tritium	
II.48	Effects of HTO on yeast cells	227

II.49	Effects of tritiated water on several model biological systems	229
II.50	Effects of tritiated water on survival and mutagenesis cells, and	
	on muse sperm	231
II.51	Development of the monitoring system for human exposure to	
	tritium: Chromosomal aberrations in human ${\tt G}_{m O}$ lymphocytes exposed	
	to HTO	233
II.52	The effect of tritium water on hematopoietic tissuePreliminary	
	experiments	235
II.53	Hematopoietic disorders by tritium compounds in men	237
II.54	Behavior of environmental tritium	239
II.55	Tritium behavior in food chain	241
II.56	Incorporation of tritium to the food chain	243
II.57	Incorporation of the environmental tritium into the biological	
	compounds	245
II.58	Uptake of tritium into sperms of mice injected with tritium-	
	labelled substances	247

Group III: Fundamentals of Reactor Plasma Control

III. 1	Fundamentals of reactor plasma control
III . 2	High temperature plasma diagnostics with far infrared
	radiations254
III. 3	Measurement of atomic density near the vacuum wall of
	high-temperature plasma devices with laser fluorescence
	spectroscopy263
III. 4	Development of an injection-locked TEA CO ₂ laser and
	of a large output power submillimeter laser pumped by
	the CO ₂ laser
III. 5	Optical measurement of high- $_{\!\!\!\beta}$ plasma with a high temporal-
	and spatial resolution267
III. 6	Spectroscopic measurement of the fluctuating field in
	plasmas with aid of the selective excitation
III.7	Development of a single-optical-axis monochromator in the
	VUV region for plasma research271
III. 8	Development of optical and magnetic diagnostic technique
	for laser fusion273
III. 9	Extreme ultra violet radiations and charge exchange
	processes in collisions of multiply-charged ions275
III.10	In-situ data handling in diagnostics of simulated
	inertially confined fusion plasma with high speed digitized
	storage scope on-line connected with computer277
III .1]	Dosimetry of single burst radiations from nuclear fusion
	plasmas
III.12	Spectroscopic study of new laser materials
III.12-1	Accurate study of KrF laser kinetics
III.12-2	Direct measurment of saturation property of an electron-
	beam pumped KrF laser285
III.12-3	Deactivation of excimers by collisions with neutral
	species
III.12-4	Time-resolved spectroscopy of atomic and molecular
	processes in ionized gases by high intensity pulsed
	electron beams
III.12 - 5	Development of high power discharge pumped XeCl laser292
III.12-6	Spectroscopic studies for alkali dimer lasers

III.12-7	Xe ₂ C1 triatomic excimer laser characteristics in intense
	E-beam-pumped Ar-Xe-CC1 ₄ mixtures296
III . 12-8	Characteristics of a pulse discharge and dissociations of
	polyatomic molecules298
III.12-9	REB-irradiated manganese complex vapor
III.12-10	Analysis of optogalvanic effect signal in CO ₂ laser
	process
III.12-11	Fluorescence characteristics of discharge excited ${\sf KrF}^{m \star}$
	at higher temperature
III.12-12	Measurements and non-empirical calculations of rotational
	relaxation rate constants of some laser molecules
III.13	Amplification by HF chemical lasers initiated by an intense-
	relativistic E-beam
III . 14	Time resolved spectroscopic study of excited state
	population in excimer laser
III . 15	Growth of large size KDP single crystal for high power
	harmonic generation in laser nuclear fusion
III.16	Subsonic multiple jet aerodynamic window
III . 17	Intense pulsed ion beam driver with cryogenic anode
III.18	Research and development of induction accelerator of
	"medium-mass ion beam" as a new driver
III.19	Inprovement of deuterated polymer pellet gain for inertial
	confinement fusion
III.20	Pellet coating by plasma chemical vapour deposition
III.21	Electrodynamic method of pellet handling
III.22	Development of accelerator of intense ion beam by
	the adiabatic compression of ion ring
111.23	Wave heating and control of high temperature plasmas
III . 24	Development of negative ion sources
III . 25	Neutralization of ion beams on semiconductive creamic
	surface
III.26	Nonadiabatic scattering of ion beams due to a periodic
	magnetic field
III . 27	Electrostatic energy conversion from charged particles
III . 28	Theoretical approach to diagnostic methods in fusion
	plasmas

Group	N :	Technology of Superconducting Magnet	
IV.	1	Basic aspects of R & D of superconducting magnet technology	
		(The fourth group) ·····	349
IV.	2	Processing of superconducting materials by use of a plasma	
		beam melting technique	351
IV.	3	Preparation and neutron irradiation effect of superconducting	
		Mo-based amorphous alloys	353
IV.	4	Production of superconducting materials for nuclear fusion	
		reactors by reaction diffusion method	355
IV.	5	Evaluation of low temperature fracture toughness of structural	
		alloys for superconducting magnet in fusion energy systems	357
IV.	6	Preparation of high T _c superconducting materials	
IV.	7	The experimental study of pulse shielded superconductive	
		magnetic energy storage	361
IV.	8	Study on magnetomechanical deformation of superconducting	
		magnets in magnetic fusion reactors	363
IV.	9	Electromagnetic properties of multifilamentary composite	
		superconductors under fast ramp-rate magnetic fields	365
IV.	10		
		superconducting magnets cooled with pressurized	
		superfluid helium ·····	367
IV.	11	Monitoring and diagnosing technique for supercondicting	
		magnets by using acoustic emission technology	369
IV.	12		
		radio-activity and stress force	371
IV.	13	Production of superconducting filament by the method of	
		glass-coated melt spinning	373
IV.	14	Reactor irradiation of superconducting magnet materials	
		at cryogenic temperatures	375
IV.	15	Performance study on superconducting magnet materials	
		- Composite Structure ·····	377
IV.	16	Fracture toughness testing of materials for superconducting	
		magnet	379
IV.	17	Dynamics of nonequilibrium superconducting state induced	
		by high energy radiation	381
IV.	18	Development of a cooling system of superconducting magnets	383
IV.	19	Development of Nb3Sn jelly-roll type superconducting wires	
		by internal diffusion in-situ method	385

xi

IV. 20	Studies on electromagnetic properties of superconducting	
	magnets by using coil simulation measurements	387
IV. 21	Dynamic performance of the pool boiling in liquid helium ••••••	389

Group V: Design and Evaluation of Fusion Reactor

۷. ۱		Conceptual design and assessment of fusion reactors	391
۷. 2	2	System design of fusion reactors	393
۷. 3	3	Conceptual design of moving ring reactor: KARIN-I	395
۷. ۷	1	A conceptual design of HIF reactor "HIBLIC"	.397
۷. ٤	5	Conceptual design of tandem mirror fusion power reactor	399
۷. 6	õ	Fusion-fission hybrid reactor system	401
۷. 7	7	Applicability of advanced fuel fusion	403
۷. 8	3	An assessment of fusion reactor safety (II)	405
۷. ۹	9	Pellet gain enhancement research for inertial confinement fusion	407
۷.10)	Atomic and molecular data for nuclear fusion research	409
۷.1	1	Plasma-wall data base for fusion research	411
۷.1	2	Dispersed two-phase flow cooling with liquid film for a high heat	
		flux surface in a fusion reactor	413
۷.13	3	Sodium mist cooling for a hot surface in a fusion reactor	415
۷.14	4	Transient thermal analysis of gas-cooled fusion reactor channels	417
۷.1	5	MHD implosion experiment of Nak free surface annular flow	419
۷.16	6	Gas cooling heat transfer coupled with radiation in a duct flow	
		with non-uniform high wall heat flux	421
۷.1	7	Stability of crack in ductile material under dynamic electro-	
		magnetic force	423