Group I : Reactor Materials and Plasma-wall Interactions

I. 1 Fusion 1 I. 2 Effects	reactor materials and plasma-wall interactions of alloying elements on the mechanical properties	1
of firs [.] I 3 The hig	t-wall-materials during or after particle irradiation	3
allovs		ج
I. 4 The inf	luence of purity, cold work and alloying elements on	J
the ann	eal hardening in neutron-irradiated molybdenum	7
I. 5 Mechani	cal tests under or after irradiation	9
I. 6 Irradia	tion effect of fatigue properties of wall materials	11
I. 7 Mechani	cal properties changes of Fe-Cr alloys by fast neutron	
irradia	tion	13
I. 8 Effect	of alloying elements on microstructure and mechanical	
propert	ies of irradiated new ferritic steel	15
I. 9 Alloyin	g effect on the fundamental process of irradiation	
creep .	•••••••••••••••••••••••••••••••••••••••	17
I.10 Testing	of the mechanical strength properties for the	
irradia	ted materials using micro-size specimen	19
I.11 Softwar	e tools for materials evaluations	21
I.12 Helium	embrittlement and irradiation creep study at NRIM	23
I.13 Creep d	uctility of austenitic Ni-Cr-Fe alloys	25
I.14 Develop	ment of coating technique for first wall of fusion	
reactor	and evaluation for irradiation resistivity	27
I.15 Irradia	tion effects of titanium carbides	29
I.16 Fundame	ntal research of aluminum alloys as a material for	
fusion	reactor	31
I.17 Phase t	ransformation in alloys under irradiation	33
I.18 The eff	ects of alloying elements on the void swelling in	
heavily	irradiated materials	35
I.19 The eff	ects of alloying elements on the void swelling in	
heavily	irradiated materials - Correlations micro structures	
irradia	ted by electrons and ions	37
I.20 The eff	ect of alloving elements on the void swelling in	
heavily	irradiated materials - radiation induced segrega-	
tion an	d phase change	39
I.2] The eff	ects of alloying elements on the void swelling in	
heavily	irradiated materials - In-situ observation of	

	radiation damage and simulation correlation	41
I.22	Irradiation behavior of graphite	43
I.23	The effect of alloying elements on the void-swelling in	
	heavily irradiated materials - fundamental process in the	
	formation of voids and blisters	45
I.24	Voids and bubbles in argon irradiated nickel	47
I.25	The effects of alloying elements on the void-swelling in	
	heavy irradiated materials - radiation damages induced by	
	14mev neutron and heavy ion irradiations	49
I.26	The effects of alloying elements on the void-swelling in	
	heavily irradiated materials The effects of nitrogen	
	on the void-swelling of 340L stainless steels	51
I.27	The effects of alloying elements on the void-swelling in	
	heavily irradiated materials - Void swelling in solution	
	treated, 20% cold worked and 20% cold-worked + aged Ti-	
	modified 316 steel	53
I.28	Study of physical and chemical sputtering processes of	
	Low-Z compounds and alloys	55
I.29	AES-SIMS-XPS study of physical and chemical sputtering	
	processes of low-Z compound materials	57
I.30	Compositional change of alloys induced by preferential	
	sputtering	5 9
I.31	Evaluation of ion impact desorption cross-section	61
I.32	Physical and chemical properties of low Z compound thin	
	films	63
I.33	Molecular processes of the interaction of hydrogen atomic	
	beam with the surface layers of solids	65
I.34	Plasma wall interactions and their influence in the realiza-	
	tion of steady nuclear fusion plasma	67
I.35	Preferential sputtering in the first wall materials by ISS-	
	SIMS-SCANIIR	69
I.36	Hydrogen permeation and recycling behaviors of first wall	
	materials	71
I.37	Interface characteristics of coating materials	73
I.38	Benchmark experiment for neutron transport through blanket	
	and shield of fusion reactors	75
I.39	Photon production nuclear date of fusion reactor materials	
	for fast neutrons	77
		2

1.40	Measurement of neutron double differential cross sections	
	for fusion reactor materials and development of related	
	code systems	79
1.41	Neutron dosimetry in irradiation fields of fast neutron	
	sources	82
I.42	Specialist neeting on fusion neutron shielding and	
	skyshine	84
I.43	Workshop on the development of intense neutron source	86
I.44	Evaluation of weldability and joining properties on materials	
	for nuclear fusion reactor vessel	88
I,45	Evaluation of weldability and joining properties on materials	
	for fusion reactor vessel.	
	Evaluation of weldability for weld zone of high precision	
	joining	90
I.46	Evaluation of weldability and joining properties on materials	
	for nuclear fusion reactor vessel.	
	Subject; high precision welding, weldability and cutting	92
I.47	Evaluation of weldability and joining properties on materials	
	for fusion reactor vessel.	
	Microstructural evaluation of welds under fusion reactor	
	environment	94
I.48	Evaluation of weldability and joining properties on materials	
	for fusion reactor vessel.	
	Metallurgical evaluation of weld joints under fusion reactor	
	condition	96
I.49	Evaluation of weldability and joining properties on materials	
	for fusion reactor vessel.	
	Control of welding stress and strain in structural members	
	and welded joints	98
I.50	Evaluation of weldability and joining properties on materials	
	for fusion reactor vessel.	
	Weldability and its improvement of molybdenum	100
I.51	Evaluation of weldability and joining properties on materials	
	for fussion reactor vessel.	
	Weldability of austenitic alloys	102
I.52	Evaluation of weldability and joining properties on materials	
	for fusion reactor vessel.	
	In-process measurement in high precision joining process	104

I.53	Evaluation of weldability and joining properties on materials
	for fusion reactor vessel.
	In situ experiment with a ultra-high voltage electron micro-
	scope - The effect of reflecting condition on the secondary
	defect formation in crystals by electron irradiation 106
I.54	Plasma spray coating of low Z ceramics on molybdenum 108
I.55	Ceramic for fusion reactor application - Pressureless
	sintering of SiC 110
I.56	Ceramics for fusion reacror application - Thermal conductivity
	of carbon fiber reinforced carbon composite 112
I.57	Ceramics for fusion reactor application - Bonding mechanism
	of ceramic coatings and its improvements
I.58	Ceramics for fusion reactor application - Strengthening
	mechanism of ceramics/metal interfacial bonding
I.59	Ceramics for fusion reactor application - Joining of alumina 118
I.60	Ceramics for fusion reactor application - Joining of dense
	silicon carbide 120
I.61	Susceptivility of solidification cracking and welding condi-
	tions of sus 316
I.62	In situ low temperature coating of the first wall by plasma
	CVT