CONTENTS

Preface		
Organiza	ation	
Researc	h Summaries	
Group 1	: Reactor Materials and Plasma-wall Interactions	
1.1	Fusion reactor materials and plasma-wall interactions	1
1.2	The effects of alloying elements on the void-swelling in	
	heavily irradiated materials	3
1.3	The effects of alloying elements on the void-swelling in	
	heavily irradiated materials. Subtask: The research of	
	void-swelling and blistering at high temperatures by HVEM	
	and ion-accelerator and the construction of irradiation	
	creep testing machine	5
1.4	Effect of alloying addition on void-swelling heavy irradiation	
	Irradiation induced segregation during ion and ellectron	
	irradiation	7
1.5	The effect of alloying elements on the void-swelling due to	
	heavy irradiation effectsDepth dependence of radiation	
	hardening in 10 MeV ⁴ He ⁺ -ion bombarded molybdenum, studied	
	by micro-hardness test	9
1.6	In-situ observation of heavy-ion radiation damage	11
1.7	Void formation by HVEM and ion accelerator irradiation	13
1.8	Void swelling in proton irradiation Fe-Ni-Cr alloys	15
1.9	Void swelling in molybdenum and molybdenum-alloys irradiated	
	by 0.9-MeV nitrogen ions	17
1.10	Material development for first wall of fusion reactor	19
1.11	Fundamental process of blister formation on the first wall	
	of fusion reactor	21
1.12	Defect structure development in Ar ⁺ irradiated nickel	23
1.13	Radiation damage of fusion reactor materials	25
1.14	Irradiation effect on fatigue property of wall materials	27
1.15	Physical and chemical sputtering process of low-Z compounds	
	and alloys	29
1.16	AES-SIMS-XPS study of physical and chemical sputtering	
	process of low-Z compound materials	31
1.17	Compositional change of alloys induced by ion bombardments	33
1.18	Desorption measurements by ISS	35

1.19	Molecular processes of the interactions of atomic and ionic	
	beams of hydrogen with the surface layers of solids	37
1.20	Surface effect on hydrogen permeation of first wall materials	39
1.21	Permeation of deuterium implanted into first wall materials	41
1.22	Hydrogen isotope permeation through fusion reactor materials:	
	Oxidation of niobium metal and its alloy at very low oxygen	
	partial pressure	43
1.23	Plasma wall interactions and their influence in the realization	
	of study nuclear fusion plasma	45
1.24	Benchmark experiment for neutron transport through blanket	
	and shield of fusion reactors	47
1.25	Measurements of neutron double differential cross sections for	
	fusion materials	51
1.26	Topical meeting on nuclear problems for the nuclear design of	
	fusion reactors	53
1.27	Neutron cross sections for design of a fusion reactor blanket	55
1.28	Photon production nuclear data of fusion reactor materials	
	for fast neutrons	57
1.29	Cross sections for measurements of neutron dose in heavy fast	
	neutron irradiation experiments	59
1.30	14 MeV (n,p) reaction using a position sensitive counter-	
	telescope with large angular acceptance	61
1.31	Evaluation of weldability and joining properties on materials	
	for nuclear fusion reactor vessel	63
1.32	Evaluation of weldability and joining properties on materials	
	for nuclear fusion reactor vesselEvaluation of weldability	
	for weld zone of high precision joining	65
1.33	Evaluation of weldability and joining properties on materials	
	for nuclear fusion reactor vesselJoining of dense silicon	
	carbide	67
1.34	Evaluation of weldability and joining properties on materials	
	for nuclear fusion reactor vesselMetallographic estimate for	
	welded joint under severe environment	69
1.35	Evaluation of weldability and joining properties on materials	
	for nuclear fusion reactor vesselHigh precision-welding and	
	weldability	71
1.36	Evaluation of weldability and joining properties on materials	
	for nuclear fusion reactor vesselMicrostructural evaluation	

	of welds under environment	73
1.37	Evaluation of weldability and joining properties on materials	
	for nuclear fusion reactor vesselJoining process for	
	composite materials and their quality assurance	75
1.38	Evaluation of weldability and joining properties on materials	
	for fusion reactor vesselMetallurgical evaluation of weld	
	joints under fusion reactor condition	77
1.39	Control of weld deffects in electron beam welding of Ni-base	
	superalloy for fusion reactor	79
1.40	Application of low Z material as the first wall of fusion	
	reactor	81
1.41	Application of low Z material as the first wall of fusion	
	reactorFabrication of carbon/carbon composite, and its	
	mechanical and thermal properties	83
1.42	Plasma spray coating of low Z ceramics on molybdenum	85
1.43	Preparation of low Z ceramics as a coating material for	
	first wall of fusion reactor by chemical vapor deposition	87
Group 2	2: Science, Technology and Biological Effects of Tritium	
2.1	Cooperative study on science, technology and biological effects	
	of tritium	89
2.2	Fundamental studies on tritium technologyBreeding, separation	
	and reactivity	91
2.3	Mass spectroscopic analysis of tritium- and helium-containing	-
	systems	93
2.4	An interval friction study of tritium in niobiumThe	•
	concentration, the microscopic state of tritium in metals	
	and their effects on materials properties	96
2.5	Observation of tritium trapping in fusion reactor materials	
	by micro-autoradiography	98
2.6	Tritium processing study relating to fusion reactor research	
2.7	An apparatus for accurate determination of tritium release	
	rate from neutron irradiated materials by helium gas sweeping	
	method	102
2.8	Removal of tritium from liquid lithium by extraction with	100
	molten salts and gettering with solid materials	104
2.9	Estimation on leakage of tritium gasFrom high-pressure	201
	experiments on H ₂ , D ₂ , and He gases	106
	Chrometer on M2, 52, and no 50000	100

2.10	Safety handling and waste treatment of tritium	108
2.11	Behavior recoil tritium atoms in the solid phase	110
2.12	Monitoring system for fusion reactor and tritium plant	112
2.13	Permeation and diffusion of tritium in metals	114
2.14	Permeation and contamination of tritium in gloves	116
2.15	Compatibility of metals with liquid lithium under hydrogen	
	or deuterium atmosphere and external radiation effects on	
	hydrogen diffusion in metals	118
2.16	Behaviour of tritiated water in food chains and its waste	
	disposal	120
2.17	Construction of facilities for operation with tritium in	
	biological research	122
2.18	Basic problems and improvement of equipments for the studies	
	of the effect of tritium on living materials	124
2.19	Kinetics of tritium in water molecules in mammals	126
2.20	Effects of tritium on the living organisms	128
2.21	Behavior of tritium in the environmental and its effects to	
	human beings	130
2.22	Specificity of base substitutions induced by decays from	
	tritiated thymidines and HTO-irradiation in $\underline{E.coli}$	132
2.23	Incorporation, distribution and molecular behavior of tritium	
	in higher organisms from tritiated water in the environment	134
2.24	Effects of tritium on DNA	136
2.25	Effects of tritium β -decay on the hydrogen bonded systems of	
	DNA bases. Preliminary theoretical calculations	138
2.26	Effects of tritium on the living system and biomolecules	140
2.27	Tritium handling technology for fusion reactors and critical	
	discussions on tritium-related problems for burning plasma	142
2.28	Symposium: On experimental equipments desirable for the	
	investigation of tritium	144
2.29	Symposium: Problems of tritium handling raised health-physics	
	viewpoints	146
Group 3	: Fundamentals of Reactor Plasma Control	
3.1	Fundamentals of controlling fusion plasma	149
3.2	Theoretical approach to diagnostic methods in fusion plasmas	152

3.2 Theoretical approach to diagnostic methods in fusion plasmas 1523.3 High temperature plasma diagnostics with far infrared radiations 154

3.4	Interferometric study of high- β plasma with high temporal-	
	and spatial resolutions	158
3.5	Measurement of impurity atom densities in high-temperature	
	plasma devices with resonant scattering	160
3.6	Resonance scattering experiment on impurity ion	162
3.7	Extreme ultraviolet radiations and charge exchange processes	
	in collisions of multiply-charged ions	164
3.8	Spectroscopic measurement of the fluctuating field in plasmas	
	with aid of the selective excitation	166
3.9	Development of single-optical-axis monochromater in VUV	
	region for plasma research	168
3.10	Measurement of high velocity neutral particles from plasma	170
3.11	Measurement of plasma current profile by neutral beam probing	172
3.12	A heavy ion beam probe applicable to a medium-sized device	
	for nuclear fusion research	174
3.13	Spectroscopic study of new laser materials	176
3.14	Parametric study and development of a simulation code for	
	a REB-pumped KrF laser system	178
3.15	Pumping and amplification property of an electron beam pumped	
	KrF laser	180
3.16	Time-resolved spectroscopy of atomic and molecular processes	
	in ionized gases by high intensity pulsed electron beam	182
3.17	Effects of foreign gases on the KrF laser power and spectrum	185
3.18	Fluorescence from HgBr produced by photodissociation	187
3.19	Cs-Xe excimer and HF laser	189
3.20	Intense electron beam excitation of new gas laser materials	
	in ultraviolet region	191
3.21	Optical pulse compression for high power lasers	193
3.22	Time resolved spectroscopic study of excited state population	
	in excimer laser	195
3.23	Study on saturation characteristics of laser absorption with	
	organic compounds	197
3.24	Measuring surface and bulk absorption coefficient of high	
	power laser optics by holographic interferometric methods	199
3.25	Theoretical research of free electron laser	201
3.26	Development of optical and magnetic diagnostic technique in	
	laser-fusion-plasmas	203
3.27	Tomographic image process by fresnel zone plate	205

3.28	High gain polymer pellet for inertial nuclear fusion	207
3.29	Electrodynamic method of pellet handling	209
3.30	Heating and confinement of fusion plasmas produced by	
	Cylindrically converging blast waves	211
3.31	Generation of high power mm-wave and its transmission	
	technique	213
3.32	Current sustaining and plasma heating by travelling lower	
	hybrid wave	217
3.33	An optimization of confinement and heating in non-axisymmetric	
	tori	219
3.34	DC ion source and optical measurement of beam species	221
3.35	Development of negative ion sources of deuteron by the use of	
	Cs-D ₂ discharge	224
3.36	Transport phenomena near the plasma surface in RF heating	226
3.37	Direct energy conversion through charged particle trapping	228
3.38	Pulsed, gas-insulated discharges	230
3.39	Direct converter for tandem mirror reactor	232
3.40	Foundation of numerical method in nuclear fusion research	234
3.41	Field-reversed ion ring plasma systems	236
Group 4	: Technology of Superconducting Magnet	
4.1	Basic aspects of R & D of superconducting magnet technology	239
4.2	A-15 and chevrel phase superconducting compounds	241
4.3	Microstructures and superconducting properties of in situ	
	$\texttt{Cu-Nb}_3\texttt{Sn}\ \texttt{composites}\ \ldots$	243
4.4	Preparation of high Tc superconducting materials	245
4.5	Production of superconducting materials for nuclear fusion	
	reactors by reaction difusion method	247
4.6	High temperature superconductors resistant to radio-activity	
	and stress force	249
4.7	The conceptual design of splittable superconducting coils for	
	toroidal type fusion reactors	251
4.8	Superconducting Nb_3Sn wire with high critical current density	
	in high magnetic field	253
4.9	Radiation effects of superconducting magnet materials at low	
	temperature	255
4.10	Performance study on superconducting magnet materials under	
	thermonuclear fusion conditionsPart I Radiation effects	257

4.11	Cooling system of superconducting magnets	259
4.12	In-situ $\ensuremath{\mathtt{Nb}_3}\ensuremath{\mathtt{Sn}}$ reaction with Sn pre-loading by (Al-Sn) alloy	261
4.13	Effects of mechanical stresses on dielectric breakdown strengths	
	of PET and FRP at room temperature	263
4.14	Fundamental electromagnetic phenomena in superconducting cables	265
4.15	Pinning characteristics of superconducting materials at high	
	magnetic fields	267
Group 5	: Design and Evaluation of Fusion Reactor Design	
5.1	Conceptual design and assessment of fusion reactors	269
5.2	Introduction to science assessment of nuclear fusion research	271
5.3	Advanced fuel cycles	273
5.4	Organization of fusion researches in universities	275
5.5	Conceptual design of magnetic open systems of fusion reactor	277
5.6	Conceptual design studies on ion-beam-driven inertial	
	confinement fusion reactor	279
5.7	Cooling method of fusion reactor blanket by liquid-metal	
	annular-dispersed two-phase flow	281
5.8	Sodium mist cooling for a hot surface in a fusion reactor	283
5.9	Natural convection in liquid metal under magnetic field	285
5.10	MHD pressure drop of Nak flow in a circular pipe	287
5.11	High-heat-flux wall cooling by liquid and dispersed melting	
	particle flow	289
5.12	Dosimetry of single burst radiations from nuclear fusion	
	experiments	291
5.13	Materials performance under pulsative composite stress in ICFR	293
5.14	Workshop on radiation dosimetry and hazard control for	
	experimental nuclear fusion studies	295