I. 大型ヘリカル装置(LHD)計画

1. 大型ヘリカル装置(LHD)計画の研究計画検討

(1)	大型へリカル装置研究計画検討作業	
	核融合科学研究所 藤原正巳	1
(2)	ヘリカル型装置閉じ込めスケーリングの評価と確立	
	京都大学へリオトロン 大 引 得 弘 ·································	2
(8)	大型へリカル装置「輸送」検討作業会	
	核融合科学研究所 山 崎 耕 造 ······	3
(4)	ダイパータ実験計画	
	核融合科学研究所 大 藪 ڭ 義 ······	4
(5)	MHD実験計画作業会	
	核融合科学研究所 等々力 二郎	5
(6)	大型ヘリカル装置での定常プラズマ保持研究に関する検討作業	
	核融合科学研究所 森 本 茂 行	6
2.	装置本体設計及びR & D 研究	
(1)	大型へリカル装置本体の実施設計	
	核融合科学研究所 本島 修	7
(2)	大型へリカル装置の磁場解析と制御設計	`.
	核融合科学研究所 山 崎 耕 造	8
(8)	LHDダイバータ設計研究	
	核融合科学研究所 大 藪 修 養	9
(4)	大型へリカル装置第一壁ダイバータ板設計と試作開発	
	核融合科学研究所 野田信明	10
(5)	大型へリカル装置用電源システムの研究	
		11
(6)	LHDの真空系および第一壁コンディショニングの研究	
	核融合科学研究所 赤石 憲 也	12
(7)	大型ヘリカル第一壁用黒鉛の総合的評価およびプラズマ壁相互作用の検討	
	北海道大学工学部 山科俊郎	13
(8)	大型ヘリカル第一壁用黒鉛の水素イオンによるエロージョン特性	
	北海道大学工学部 山科俊郎	14
(9)	大型へリカル装置用超伝導コイルの設計	
	核融合科学研究所 山本 鮴 也	15

100	大型ヘリカル装置用超伝導コイルの冷却冷凍技術						
	核融合科学研究所	山	本	純	也	***************************************	16
(11)	大型超伝導コイルの安定性と保護の研究						
	核融合科学研究所	佐	藤		隆	***************************************	17
(12)	大型超伝導コイルの超流動へリウム冷却に関する基礎	研究	<u>.</u>				
	九州大学工学部	竹	尾	Œ	勝	***************************************	18
(13)	ヘリカルコイル用超伝導導体のずれによる援乱と安定	性					
	横浜国立 大学工学部	塚	本	傪	巳	***********************	20
(14)	先進超伝導線材の補強安定化と高電流密度化						
	岩 手 大 学 工 学 部	能	登	宏	t	***************************************	21
(15)	大型へリカル装置用超伝導コイル導体の損失						
	鹿児島大学工学部	住	吉	文	夫	***************************************	22
(16)	超伝導コイルの開発とクライオメカニックス						
		髙	橋	秀	明	***************************************	23
(17)	大型ヘリカル超伝導磁石用非金属絶縁材料の開発						
	大阪大学産業科学研究所	岡	H	東	_	***************************************	24
(18)	大型ヘリカル装置用超伝導体および支持材料の極低温	強度	特性	評価	li .		
		西	村		新	***************************************	25
(19)	超伝導コイル電源システムの検討						
	東 京 工 業 大 学原子炉工学研究所	鷞	田	隆	_	••••••	26
(20)	超伝導・極低温電気絶縁の研究						
	豊橋技術科学大学工学部	小	崎	Œ	光	***************************************	27
(21)	超伝導マグネットのクエンチ検出と保護に関する研究						
	成蹊大学工学部	石:	趣品	ij	猛	***************************************	28
(22)	大型へリカル装置超伝導コイルの電流制御アルゴリズ	46	電源	回路	技術		
	大阪大学超伝導エレクト ロ ニクス 研究 センター	村	ŀ.	青	鐅	***************************************	29
3.	加熱機器設計及びR&D研究	•		-	31 4		, o
٥.	川飛機器を図書す及びR&U切り、						
(1)	LHD 用 NBI 装置の最適化						
(1)	核融合科学研究所	Ħ	_		es.h		200
	12X HOM CT 17T TP 19/ 70. 77	त्रस	ш		7124	***************************************	30
(2)	高周波を用いた水素負イオン源の開発						
	核 融 合 科 学 研 究 所	安	藤		晃	*******************************	31
(3)	大電力ミリ波伝送回路の開発						
			、保	邦	Ξ	**************************	32
(4)	中性粒子加熱装置のための放電シミュレーション実験	Į.					
	東北大学工学部		芦	庸	幸	***************************************	20

(5)	小形高電流密度H゚イ オ	トン源の開発								
	i	去政大学	土工学	部	細	Д	辰	三	***************************************	34
(6)	シート・プラズマ型(浦本式)負ィ	オン源の	研究					•	
	፲	i 都 ま子エネル :	、大	学	袖	保	*	_	***************************************	35
	_	• •	书一研究	伊竹	17	PF	,,			3.0
	計測機器設計及びR.8	い外元								
	十 測) LHD計測機器設計と	日曜 学生								
. (1)		^{開光} 核融合科:	≝ 111 21≡	ric	3a⊏		#	≕		
(9)	・ 不純物イオンのドップ								,	36
		サー 屋	大	学					· ハテム開発 · · · · · · · · · · · · · · · · · · ·	00
(3)	・ サブミリ波ジャイロト	_		•						31
		- / を心臓で 国 井 大 学				原			***************************************	38
(N	CE • ACE • TPD)	m // // T	- - -	нь	щ	N.	TEX.	7		30
•	炭化水素イオンの表面	衝突過程の計	l-湘i							-
12,		占古屋大	•	部。	巻	#	秃	加	70777777777	39
(2)	電子衝突による分子の				₽-J	71	75	***		00
,-, ,	-	古屋大			菅	#	秀	郎	*************************	40
(8)	イオン対生成分子解離			• •	-		•	,-		40
		医融合科			人	3241000		デン。 之	***************************************	41
(4)	複合材料(合金)から						14	~		41
		客 山 大 学			山	崎	登记	tant.		42
(5)	炭化水素分子と電子と	の衝突による	散乱断 面	頑の測気		11	 トンイ	比斯位	面積の測定	
		斯潟大学								43
(1	女射 光〉									
(1)	軟X線・真空紫外域で	の測光機器的	を正法の確	立						
	·	核融合科 :	学研究	所	桜	井		誠	***************************************	44
(2)	軟X線光学素子及び光	学系の性能剤	严価							
	4	宇宙科学	神 究	所	山	ፑ	廣	順	***************************************	45
(3)	真空紫外光照射条件下	での非熱的水	く素リサイ	クリング	過程	の別	究			
	J	東京大学生産	技術研究	訮	岡	野	達	雄	***************************************	46
(4)	凝縮系からの多価イオ	ンの生成								
	<u> </u>	学習院大	学理学	部	荒	Ш	_	郞	******************************	47
(5)	イオントラップ法によ	る低温プラス	(マの研究	ŧ.						
	7	大阪大学	理学	部	木	村	Œ	弘	***************************************	48
	時間・空間分布測定用	ポリクロメー	・ターの開	発						
(6)										

5. 長期的開発研究

(開発).

(1)	アイスペレット入射の開発研究	
	核融合科学研究所 佐藤浩之助	50
(2)	核反応粒子計測(中性子計測、損失高エネルギー粒子計測)の開発研究	
	核融合科学研究所 笹尾真実子	51
(3)	負イオン加速による高エネルギー重イオンピームプローブ開発の基礎研究	
	核融合科学研究所 笹尾真実子	52
(4)	重イオンピーム用エネルギー分析器開発	
	核融合科学研究所 藤 沢 彰 英	53
(5)	電磁加速による大電力ビームの為のプラズマ源	
	核融合科学研究所 平野 惠 —	54
(6)	レールガン方式による高速高繰り返しアイスペレット入射装置の開発	
	熊本大学工学部 秋山秀典	55
(7)	大型へリカル装置における遠赤外イオントムソン散乱計測システムの開発	
	名古屋大学工学部 永 津 雅 章	56
(8)	アリカリ土類ビームプローブとレーザー誘起蛍光法に	
	よる高温・高密度ブラズマの電界・磁界計測法の開発	
	大阪市立大学工学部 膀 俣 五 男	57
(9)	計測用Li イオン源の開発	
	同 志 社 大 学 工 学 部 和 田 元 ·	58
(TF	(סי	
(1)	定常高熱流プラズマを用いたダイバータ模擬実験	
	名古屋大学工学部 高村秀一	59
(2)	再結合プラズマによる短波長レーザー発振の研究	
	広島大学工学部 尾田年充	61
(3)	大振幅電子プラズマ波励起のためのシートプラズマ生成	
	宇都宮大学工学部 西田 靖	62
雷)	鳴)	
(1)	髙エネルギー密度プラズマからのX線放射過程と中性子放出機構の研究	
(1)	東京工業大学工学部 石井 彰 三	
(2)	半球状メッシュカソードを持つポイントピンチダイオードによる大強度イオンビームの発生	63
, ,	姫路工業大学工学部 佐藤守彦	C 4
(3)	ポイントピンチダイオード陽極プラズマの軟X線計測	04
,	長岡技術科学大学工学部 八 井 浄	<u>e</u> t
(4)	パルスパワー電源によるガスパフZピンチ方式高エネルギー密度プラズマからの輻射特性	O
-	日本大学理工学部 髙 杉 恵 一	88

Ⅱ. 支援研究

1.	NIX共同研究						
. (1)	NTX共同研究(所内主導型分)						
	核 融 合 科 学 研 究 所	Ę	田 :	泰	司	***************************************	67
(2)	マイクロ波反射計を用いた電子密度、密度揺動計測法の	開	発				
	静 岡 大 学 工 学 部	Ħ	藤	Œ	士	*************************	70
2.	CHS 共同研究						
(1)	CHS における閉じ込め加熱実験						
•	核 融 合 科 学 研 究 所 杉	į	岡	暋	介	***************************************	71
(2)	ヘリカルプラズマにおけるオーミック 電 流誘起による回	転	変換	分布	制御		
	核 融 合 科 学 研 究 所	₹	井	和	夫	***************************************	72
(3)	CHS 装置における中性粒子密度分布の測定						
	九 州 大 学 大 学 院 総合 理工学研究科	4	野	二二	郎	***************************************	73
(4)							
(1)	•	ei de	茶港	ŀŀ	± .	*************	7/
. (5)	プラズマ中の粒子挙動の解明に必要な新計測法の開発	ą p	FI 115	1-0	П		14
(0)							
	九 州 大 学 大 学 院 総 合 理 工 学 研 究 科	ţ	岡	克	紀	***************************************	75
3.	支援調査共同研究						
(1)	高性能遠赤外検出器の開発						
	核融合科学研究所 顧	Ē	田	順	治	***************************************	76
(2)	プラズマ中におけるカオス現象						
	九 州 大 学 大 学 院 総 合 理 工 学研 究 科	ij	合	良	信	,	77
	*** E AS II 70 17						
ш. :	理論・シミュレーションの共同研究					•	
ш	生職・フミュレーフョンの共同例え						
A.	理論・シミュレーション研究センター共同研究					•	
(1)	磁場の幾何学的配位・粒子の運動論的効果を考慮した炉	心	プラ	ズマ	輸送	機構の解明	
	核融合科学研究所 佐	Ė	藤	哲	也	***************************************	78
(2)	磁気流体プラズマにおけるエネルギー緩和・変換機構の	解	明				
	核融合科学研究所 依	Ė	藤	哲	也	***************************************	79
(3)	FLR-MHD乱流の研究					•	
	京 都大学 ヘリオトロン 核 融 合 研 究 セ ン タ ー ^そ	±	谷	誠	宏	***************************************	80
(4)	ハミルトン力学系におけるエルゴード問題と散乱現象の						
,	早稲田大学理工学部 村			洋	_	**************	81
	· · · · · · · · · · · · · · · · · · ·		~ •		-		

B. 理論・データー解析研究系共同研究

(1)	大型ヘリカル装置設計に関する物理検討					•	
	核融合科学研究所	岡	本	Œ	雄	***************************************	82
(2)	ヘリカルプラズマの加熱と輸送機構						
	核融合科学研究所	天	野	恒	雄	***************************************	83
(3)	ヘリカルトーラスのMHD 現象						
	核融合科学研究所	等	4 7	ל ל	二郎	***************************************	84
(4)	ダイバータ領域におけるブラズマ流の解析						
	核融合科学研究所	渡	辺	=	太	************************	85
· (5)	徴視的安定性改善による異常輸送低減の研究						
	核融合科学研究所	伊	藤	公	孝	************************************	86
C.	その他共同研究						
(1)	トロイダルプラズマ安定性の理論的研究						
	福井工業大学工学部	山	岸	留	欠郎	***************************************	87
(2)	非線型プラズマにおける構造とダイナミクス						
	名古屋大学理学部	野	崎	~	洋	***************************************	88
(3)	髙温プラズマにおける不可逆過程						
	自治医科大学医学部	青	野		嫠	************************	89
(4)	静磁場に垂直に伝播する電磁波と荷電粒子の相互作用	Ħ					
	山梨大学工学部	竹	内		智	47-*1	90
IV.	計算機利用共同研究						
カテ	I						
(1)	大型ヘリカル装置の磁気面解析						
	核融合科学研究所	山	崎	耕	造	***************************************	91
(2)	大型ヘリカル装置の平衡と輸送解析						•-
	核融合科学研究所	山	崎	耕	造	*******************************	92
(3)	大型ヘリカル装置設計のためのMHD解析						
	核融合科学研究所	金	子		þ		93
(4)	DKESコードを用いた大型ヘリカル装置の輸送解析						
	東京大学工学部	小	Щ	雄	_	***************************************	94
(5)	ヘリカル系におけるダイバータの研究						
	京都大学へリオトロン 核融合研究センター	大	31	得	弘	***************************************	95
(6)	JIPP T-IIUの実験データ解析						
	東京大学工学部	小	川	雄	_	*******************************	96
	·						

(7) 多次元磁化プラズマの電流構造及び駆動過程に関するマクロスケール粒子

シミュレーション

	核融合科学研究所 田中基彦	97
(8)	トーラスプラズマの粒子輸送に関するシミュレーション・モデリング	
	核融合科学研究所 佐藤哲也	98
(9)	マクロスケール粒子シミュレーションを用いた逆磁場配位における	
	有限ラーモア半径効果の解析	
	核融合科学研究所 堀內利得	99
(10)	3 次元ジャイロ運動論的粒子コードによるMHD及び輸送のシミュレーション研究	
	山口大学工学部 内藤裕志	100
(11)	「非一様・非線形」核融合プラズマ研究の低周波マクロスケール	
	粒子シミュレーションコードの整備	
	核融合科学研究所 田中基彦	101
(12)	周辺プラズマ(SOL)の輸送解析	
	核融合科学研究所 伊藤早苗	102
(13)	スクレイプオフレイヤーの粒子シミュレーション	
	東北大学工学部 石黒静児	103
(14)	ヘリカル系の3次元平衡	
	核融合科学研究所 林 隆 也	104
(15)	磁気流体プラズマのエネルギー緩和現象	
	核融合科学研究所 林 隆 也	105
(16)	トカマクプラズマの鋸歯状振動現象における非線形エネルギー緩和過程の研究	
•	核融合科学研究所 渡邉 國彦	106
(17)	高密度電流トーラス系におけるエネルギー緩和機構の解明と閉じ込め制御	
	広島大学理学部 草野完也	107
(18)	磁気流体におけるエネルギー変換と磁気リコネクションの研究	
	広島大学理学部 草野完也	108
(19)	逆転職場ピンチ装置における磁場逆転のダイナモ機構の研究	
	富山大学工学部 小出真路 ************************************	109
20	MHD 乱流における磁場のセルフオーガゼニゼーションと乱流ダイナモ	
	和歌山大学教育学部 水 島 二 郎	110
(21)	大型へリカル装置プラズマの物理検討	
	核融合科学研究所 岡本正雄	111
(22)	輸送コードによるヘリカル系プラズマの解析	
	核融合科学研究所 岡本正雄	112
(23)	ヘリカル系におけるギャップモード	
	核融合科学研究所 中島徳嘉	113

(24)	ヘリカル平衡に対する新古典論的効果						
	核融合科学研究所	中	島	徳	嘉	***************************************	114
(25)	ヘリカル系における高エネルギー粒子損失の制御						
	京都大学へリオトロン 核 融合 研 究 セ ンター	花	谷		清	***************************************	115
(26)	ヘリカル系における異常輸送モデルの研究	•					
	核融合科学研究所	₩	鱳	英	雄	***************************************	116
(27)	ヘリカル系トーラスのMHDモードの安定性に関する	研究	:				
	核融合科学研究所	市	П	勝	治	***************************************	117
(28)	ヘリカルトーラスのMHD 平衡及び安定性の解析						-
	核融合科学研究所	等点	力	=	郞	***************************************	118
(29)	トーラスの輸送と加熱のシミュレーション						
	核融合科学研究所	天	野	怚	雄	***************************************	119
(30)	ダイバータ領域におけるプラズマ流の解析						
	核融合科学研究所	渡	辺	=	太	***************************************	120
(91)	外部磁場制御による周辺プラズマ制御法の研究						
	核融合科学研究所	伊	藤	公	孝	*************************	121
(32)	ヘリカル系プラズマの輸送と加熱のシミュレーショ	ン				•.	
	京都大学へリオトロン 核 融合 研究 センター	若	谷	誠	宏	***************************************	122
(33)	FLR-MHD方程式系による数値シミュレーション						
	京都大学へリオトロン 核 融合 研究 センター	若	公	誠	宏		123
/- .a			ਸਾ	DIST.	44.		123
(34)	三次元MHDコードによるヘリカル系トーラスの研究	ž					
	京都大学へリオトロン 核 融合 研 究 セ ンター	中	村	祐	司	*****************************	124
(36)	HELIOSコードをもちいたNBI 加熱のシミュレーショ	ョン					
	京都大学へリオトロン 核 融合研究 センター	花	谷		凊	***************************************	125
(36)	プラズマ電位形成と関連する周辺プラズマ基礎特性	の解制	Ħ				
, -			_	盐	弫	***************************************	126
カテ	ゴリーⅡ	14		B1 .	,,		120
	大型へリカル装置の技術的設計						
	東京大学工学部	小	Ш	雄	_		127
(2)				_			101
			Л	雄	_	***************************************	128
(8)	大型へリカル装置用電源系の動的解析	Ť			e		
		棚	欇	秀	伍	***************************************	129
(4)	超伝導コイルの超流動へリウムによる冷却特性						-
	九州大学工学部	福	田	研	=		130

	·	
(5)	超臨界圧へリウムへの過渡伝熱と超伝導安定性	
	九州大学工学部 伊藤猛宏	31
(6)	大型へリカル装置第一壁・ダイバータ板設計研究	
	核融合科学研究所 野田信明	.32
(7)	ヘリカル・トーラス系における安定性及び輸送と電場	
	核融合科学研究所 佐 賞 平 二	.33
(8)	ヘリカル系磁場の解析	
	京都大学へリオトロン 中須賀 正 彦	.34
(9)	モジュール型ステラレーターの研究	
(0)		35
- (10)	ヘリカル軸をもつヘリカルコイル装置の研究	.00
		36
an	L=1系立体磁気軸配位に於けるプラズマの平衡と安定性	.00
	日本大学理工学部 椎名庄一	37
(12)	ℓ = 1トルサトロンにおける粒子輸送と磁気面崩壊	
	日本大学理工学部 鈴 木 瀠 光	.38
(13)	CHS の重イオンビーム軌道計算	
	日本大学 理工学部 高 杉 恵 一	39
(14)	プラズマへのアイスペレット入射に関する研究	
•	核 融 合 科 学 研 究 所	40
(15)	ヘリオトロンEにおけるペレット入射プラズマの輸送解析	
	京都大学へりオトロン 須 藤 滋	41
MA		41
(16)	中性粒子分析器に関する解析計算	
Ara.	核融合科学研究所 尾崎 哲	42
	パワー変調されたレーザービームによるプラズマ波動励起の計算機実験	40
(18)	名 古 屋 大 学 工 学 部	.43
110)		
(19)	広島大学工学部 尾田年充 ····································	.44
(14)		45
(20)	名 古 屋 大 学 工 学 部 永 津 雅 章	.45
40	京都大学理学部 曄道 恭	10
(21)	筑波大学ガンマ10タンデムミラーにおけるICRF加熱と高密度プラズマ生成	40
` '		
_	筑 波 大 学 市 村 真	.47
(22)	ガンマ10における電子サイクロトロン共鳴加熱	
	筑波大学物理学系 斉藤輝雄	48

(23)	ガンマ10におけるプラズマ輸送及び電位形成に関する計算機シミュレーション	
	筑波大学物理学系 石 井 亀 男	149
(24)	ガンマ10における粒子計測並びにイオン・中性粒子輸送に関する計算機シミュレーション	-
	筑 波 大 学 中嶋 洋輔	150
(25)	タンデムミラーの輸送及び静電ポテンシャル形成の計算機シミュレーション	
	筑	151
(26)	MHD 緩和に於けるMHD 不安定性と有限抵抗境界との相互作用	
	東京大学工学部 吉田善章	152
(27)	RFP プラズマの自己構造形成過程のシミュレーション解析	
	大阪工業大学工学部 長 田 昭 義	153
(28)	RFP プラズマの自己構造形成と閉じ込め特性	
	名 古 屋 大 学 佐 藤 紘 一	154
(29)	逆磁場配位プラズマの平衡と安定性のシミュレーション	
	京 都 大 学 ・ 原子エネルギー研究所 大 西 正 規	155
(30)	FRCプラズマの内部傾角モード安定性	
	新 冯 大 学 理 学 部 石 田 昭 男	156
(31)	フラックス・コア・スフェロマックの生成維持と緩和過程の数値解析 (二)	
	岐 阜 薬 科 大 学 坂 恒 夫	157
(32)	トーラス系におけるForce-Free 磁界の解析	,
	愛媛大学工学部 辻 泰正 ··································	158
(33)	動的な磁気中性面におけるエネルギー変換機構の粒子シミュレーション	
	山 梨 大 学 工 学 部	159
(34)	Ambi-Plasma の生成及びその特性の解析	
	京都大学教養部 毛利明博	160
(35)	イオンビーム対向衝突核融合(IBC)に関する数値解析	
		161
(36)	電磁加速による大電力ビームの生成とその応用	
	核融合科学研究所 平野 恵 一	162
(37)	NBI 用負イオン源の基礎的シミュレーション	
	山口大学工学部 内藤裕志	163
(38)	高出力ミリ波電子管"オートレゾナントペニオトロン"の開発	
	東北大学電気通信研究所 小野昭	164
(39)	電子サイクロトロン共鳴加熱用ミリ波導波系の理論解析	
	京都大学工学部 中島将光	165
(40)	大出力プラズマ後進波発振器の特性解析	
	新 潟 大 学 工 学 部	166

(41)	波動加熱とそれに伴う輸送現象の解析	
	岡 山 大 学 工 学 部 福 山	167
(43)	TSC コードの整備と非円形断面トカマクの上下不安定性の研究	
	核融合科学研究所 水野幸雄	168
(43)	電子温度勾配によるプラズマ乱流	
	日本大学工学部 严次直明	169
(44)	電子二流体不安定性の非線形発展とソリトン発生	
	九州大学大学院 田中雅慶総合理工学研究科 田中雅慶	170
(46)	Vlasov 系における構造形成と乱流構造の解析	
	東京工業大学理学部 北原和夫	171
(46)	非線形磁気流体波におけるエネルギー緩和・変換機構の解明	
•	名 古 屋 大 学 大 澤 幸 治	172
(47)	円筒状ピンチプラズマにおける径方向非線型振動現象の数値解析	
	北海道大学工学部 谷	173
(48)	プラズマ中の相対論的電子ビームと輻射電磁場の解析	
	東京大学工学部 吉田善章	174
(49)	非線形MHD 不安定とそれにともなう駆動型リコネクションのMHD シミュレーション	
		175
(50)	周辺プラズマ中に形成されるシースの構造に関する粒子シミュレーション	
	名古屋大学工学部 上 杉 喜 彦	176
(51)	表面生成重負イオンピームの軌道解析	
	同志社大学工学部 和田 元	177
(52)	ビーム・プラズマ系における非線形ランダウ減衰によるエネルギー輸送	
	愛 媛 大 学 理 学 部	178
(53)	非線形ランダウ減衰によるプラズマ波の散乱とプラズマ加熱・加速	
	爱媛大学理学部 菅谷礼爾	179
(54)	核融合プラズマ中のX線輸送の研究	
	長岡技術科学大学工学部 川田電夫	180
(55)	粒子ビームの収束と加速に関する数値シミュレーションおよび粒子コードの並列化	
1-3	米子工業高等専門学校 松 本 正 己	181
(56)	KrF レーザー照射慣性核融合ターゲットプラズマの基礎過程の研究	
	電気通信大学レーザー 種限技術研究センター 植田 憲 一	182
(57)	TRIM85モンテカルロ・コードの並列化、三次元化と粒子一壁相互作用の研究	
	徳島大学工学部 森 一郎 ·······	183
(68)	境界プラズマ・ダイバーター板系における腐蝕のシミュレーション	
	岡山理科大学理学部 山 村 泰 道	184

(sa)	セラミックスの照射損傷過程と速度論過程の計算機構	書作なっ	₩			•	
(oay	九州大学工学部			400	8	***************************************	105
(60)	プラズマ・壁相互作用における二次電子放出	~	ľ	Ħ	兄		100
(04)	東京学芸大学教育学部	新	Ħ	蓝	雄		186
(61)	水素が注入された炭素壁からの2次電子放出	7071	ш	^			100
, ,	徳 島 大 学 工 学 部	大	宅		#	***************************************	187
(62)	分子動力学法による核融合炉材料中性子照射損傷過程		_	養シ :	~~ ₹ .= 1		207
	広島大学工学部		村		治	***************************************	188
(63)	炉システムにおける熱流体解析コードの開発						
	名古屋工業大学工学部	長	野	靖	尚	***************************************	189
(64)	MHD 発電方式による核融合炉からのエネルギー取り)出t	, ,				
	京都大学工学部	石	Щ	本	雄	***************************************	190
(66)	偏極アドバンスト核融合におけるD+D→³He+n,	t+p	反応	のチ	ャネ	ル結合理論による評価	
	九州大学理学部	上	村	正	康	******************************	191
(66)	スペクトル法によるMHD 安定性解析手法の研究	•				. •	
	核融合科学研究所	上	村	鉄	雄		192
(67)	高精度 MHD 解析手法の研究						
	核融合科学研究所	城之	内	忠	Œ	***************************************	193
(68)	一般化座標での非定常非圧縮 MHD 方程式の数値解	去			•		
	四日市大学経済学部		本		Œ	***************************************	194
(60)	2 つの電流ループの 3 次元的合体緩和過程と磁気再終	吉合の	研到	ť		•	
	富山大学工学部	坂	井	純	_		195
(70)	電磁波動加熱と電流駆動の粒子シミュレーション						
	龍谷大学理工学部	阿	部	宏	尹	*****************************	196
_	ゴリーⅢ						
(1)	格子渦管モデルによる乱流シミュレーション	_		•••			
(9)	東京工業大学理学部	ш	П	吾	弘	***************************************	197
(2)	秩序形成過程の非線形動力学 九 州 大 学 理 学 部	167	ick	41-			400
(3)	九 川 八 子 垣 子 司 先進超伝導線材の補強安定化と高電流密度化の数値		岬	44	佰	***************************************	198
(0)	岩 手 大 学 工 学 部		974	#	ملا		
(A)	任 2材コーティングとプラズマ界面過程	HE	JR .	A	ъ	*****************************	199
('2)	名古屋大学工学部	*	#	∌ £	郎		200
(5)	型 ロ 座 ハ テ エ テ 昭 酸化物照射中の照射電離に伴う過渡的電荷効果の模			74	w		200
.=,	名古屋大学理学部			*	腏	***************************************	201
(6)	黒鉛および金属被覆黒鉛における水素同体の動的学		₩ # ₹	1054	**14		OAT
	名古屋大学工学部		田	健	治	************	202
			-	-			

(7)	面放電形ACガス放電パネルの動作解析に関する研究 広島大学工学部 内池平樹 ···················· 20
(8)	ム 島 大 字 上 字 部 内 池 平 樹
10)	to 1. 1 to
(0)	名 古 屋 大 字 工 学 部
(0)	100 100 100 100 100 100 100 100 100 100
	名 古 屋 大 学 太陽地球環境研究所 鷲 見 治 ·一 ·················· 20
00	天体へリカルシステムの研究
	名 古 屋 大 学 鷲 見 治 —
(11)	MHD乱流のLagrange 的視点からの研究
	名古屋大学工学部 金田行雄
(12)	
_	北海道大学工学部 及川俊一
(13)	プラズマ・核融合研究のための信号・画像処理法の開発
	富山県立大学工学部 . 岩 間 尚 文 20
(14)	FD-TD 法による超高速カメラのシャッタリング特性の解析
	北海道大学工学部 榎 戸 武 揚
(15)	スペクトル法による非平衡プラズマの直接数値シミュレーション
	スペクトル法による非平衡プラズマの直接数値シミュレーション 名古屋工業大学工学部 長谷川達也 ···················· 2: 研究・企画情報センター及び安全管理センターの共同研究
. 7	名古屋工業大学工学部 長谷川達也
1.	名古屋工業大学工学部 長谷川達也 ····································
1.	名古屋工業大学工学部 長谷川達也 ····································
1. (1)	名古屋工業大学工学部 長谷川達也
1. (1)	名古屋工業大学工学部 長谷川達也
(1) (2)	名古屋工業大学工学部 長谷川達也
(1) (2)	名古屋工業大学工学部 長谷川達也
1. (1) (2) (3)	名古屋工業大学工学部 長谷川達也 22 研究・企画情報センター及び安全管理センターの共同研究 研究・企画情報センター共同研究 FRCプラズマの安定性 新 潟 大 学 理 学 部 石 田 昭 男 22 高ベータプラズマでの MHD 輸送 大 阪 大 学 工 学 部 大 井 正 ー 22 高励起状態を含む衝突輻射モデルの改良
1. (1) (2) (3)	名古屋工業大学工学部 長谷川達也 22 1 1 22 1 3 3 3 4 3 3 4 3 3 4 3 3
(1) (2) (3) (4)	お露工業大学工学部 長谷川達也 22 3 3 3 3 4 3 3 3 3 4 3 3
(1) (2) (3) (4)	おっぱっ 日本 日本 日本 日本 日本 日本 日本 日
(1) (2) (3) (4)	名古屋工業大学工学部 長谷川達也 22 研究・企画情報センター及び安全管理センターの共同研究 研究・企画情報センター共同研究 FRCプラズマの安定性 新潟大学理学部 石田昭男 22 高ペータプラズマでの MHD 輸送 大阪大学工学部 大井正ー 22 高励起状態を含む衝突輻射モデルの改良 山梨大学工学部 藤間一美 22 偏光プラズマ分光のための原子過程 京都大学工学部 藤本 孝 22 安全管理センター共同研究 プラズマ実験装置からの発生放射線に関する計測並びに監視システムの開発
(1) (2) (3) (4) 2. (1)	名古屋工業大学工学部 長谷川達也 22 研究・企画情報センター及び安全管理センターの共同研究 研究・企画情報センター共同研究 FRCプラズマの安定性 新
(1) (2) (3) (4) 2. (1)	名古屋工業大学工学部 長谷川達也 22 研究・企画情報センター及び安全管理センターの共同研究 研究・企画情報センター共同研究 FRCプラズマの安定性 新潟大学理学部 石田昭男 22 高ペータプラズマでの MHD 輸送 大阪大学工学部 大井正ー 22 高励起状態を含む衝突輻射モデルの改良 山梨大学工学部 藤間一美 22 偏光プラズマ分光のための原子過程 京都大学工学部 藤本 孝 22 安全管理センター共同研究 プラズマ実験装置からの発生放射線に関する計測並びに監視システムの開発

(9)	大型へリカル実験計画における放射線防護に関する検討(作業会)						
(0)	核融合科学研究所 大林治夫	210					
(<u>A</u>)	施設稼動前からの環境モニタリングの立案と実施	ů1(
(**/	名古屋大学工学部 池 辺 幸 正	210					
(5)	大型核融合実験装置のトリチウムの挙動に関する模擬的実験	21					
,,,,	核融合科学研究所 佐久間 洋 一	220					
(6)	重水素を用いる LHD 実験に起因するトリチウムに関する諸問題の摘出						
	核 融 合 科 学 研 究 所 佐久間 洋 一	22					
(7)	水熱人造岩石へのトリチウムの固化						
	高 知 大 学 理 学 部	22					
(8)	環境トリチウム測定用試料の採集と測定						
	茨城大学理学部 一 政 祐 輔 ·································	22					
(9)	環境および生物におけるトリチウムの影響						
	茨城大学理学部 一政祐輔 ····································	22					
	· ·						
VI. 🥻	开究 会						
1 -	①研究会						
(1)	LHD の真空系の設計に関する研究						
•	核融合科学研究所 赤石 憲 也	22					
(2)	LHD 用水素ペレット入射装置の開発研究の進展と実験計画への目的の策定						
	核融合科学研究所 金子 博 ···············	22					
(3)	トーラス系の理論の研究会						
	核融合科学研究所 天野恒雄	22					
(4)	MHD 数値計算の基礎研究						
•	電気通信大学 牛島照夫	22					
(5)	ヘリカル系実験の課題と今後の方針						
	核融合科学研究所 松 岡 啓 介	22					
(6)	プラズマ・対向壁複合系における粒子輸送制御						
	名古屋大学工学部 高村秀一	23					
(7)	開放磁場における電位と輸送機構						
	筑波 大 学 物 理 学 系 プラズマ研究センター 谷 津 凛	99					
(0)	· · · · · · · · · · · · · · · · · · ·	20					
(8)	RFP • CT 合同研究会 東京大学工学部 桂井 誠	4.					
(9)	東京大学工学部 桂井 誠	23					
(0)							
	その応用研究会 東京工業大学工学部 石 井 彰 三 ·································	00					
	東京工業大学工学部 石井 彰三	23					

核融合炉燃料サイ 低放射化鉄鋼材料 ・② 作業グルー ヘリシティ入射,	名古屋大学工学部	加山和	藤脇井	道祐	夫		
低放射化鉄鋼材料 ・② 作業グルー ヘリシティ入射,	(クル基礎過程の研究 東京大学工学部 (本)の適応性の検討 名古屋大学工学部 ででである。 では、2000年では2000年では、2000年では2000年では、2000年では、2000年では、2000年では2000年では2000年では2000年では2000年では20	山和	脇井	道祐	夫		236
低放射化鉄鋼材料 ・② 作業グルー ヘリシティ入射,	東京大学工学部 神の適応性の検討 名古屋大学工学部 プ的会合 電流駆動, ダイバータ・バイ	アスと輸	井	祐			
- ② 作業グルー ヘリシティ入射,	和の適応性の検討 名 古 屋 大 学 工 学 部 プ 的会合 電流駆動, ダイバータ・バイ	アスと輸	井	祐			
- ② 作業グルー ヘリシティ入射,	名 古 屋 大 学 工 学 部 プ 的会合 電流駆動, ダイバータ・バイ	アスと輸	<i>,</i> ,		Ξ		237
へリシティ入射,	プ 的会合 電流駆動, ダイバータ・バイ	アスと輸	<i>,</i> ,		Ξ		237
へリシティ入射,	電流駆動, ダイバータ・バイ		送のほ	Tola			
	,		送の	TOAT			•
7041 let let let 15, 17, 11 d.4. let let	核融合科学研究所	-		叶光			
7041 14 14 15 17 44 17		伊	藤	早	苗		238
做場別じ込め装置	置における不純物計測						
	京都大学へリオトロン 核 融 合 研 究 センター	近	藤	克	己	***************************************	239
プラズマ中の波と	と粒子とのコヒーレントな相互	作用の配	究				
	名 古 屋 大 学 プラズマ科学センター	. 杉	原		亮	***************************************	240
						·	
	•						
							•
	プラズマ中の波と	プラズマ中の波と粒子とのコヒーレントな相互 名 古 屋 大 学 プラズマ科学センター	プラズマ中の波と粒子とのコヒーレントな相互作用の研名 古 屋 大 学 だ デラズマ科学センター だ	プラズマ中の波と粒子とのコヒーレントな相互作用の研究名 古屋 大学 杉原プラズマ科学センター	プラズマ中の波と粒子とのコヒーレントな相互作用の研究名 古屋 大学 杉原プラズマ科学センター	プラズマ中の波と粒子とのコヒーレントな相互作用の研究名 古屋 大学 杉原 亮プラズマ科学センター 杉原 亮	プラズマ中の波と粒子とのコヒーレントな相互作用の研究 名 古 屋 大 学 杉 原 亮