I. 大型ヘリカル装置 (LHD) 計画

1. 大型ヘリカル装置 (LHD) 計画の研究計画検討

(1)	ダイバータ実験計画作業会					
	核融合科学研究所	大	薮	修	義	 1
(2)	大型ヘリカル装置「定常実験計画」作業会					
	核融合科学研究所	野	田	信	明	 2
(3)	大型ヘリカル装置の閉じ込め実験計画					
	核融合科学研究所	須	藤		滋	 3
(4)	大型へリカル装置の放電制御・MHD実験計画作業会					
	代表者:核融合科学研究所	山	崎	耕	造	
	世話人:	山	田	弘	司	 4
(5)	ヘリカル型核融合科学研究炉の設計に関する研究					
	核融合科学研究所	本	島		修	 5
(6)	ヘリカル型核融合炉材料照射試験装置の検討					
	核融合科学研究所	室	賀	健	夫	 6
(7)	ヘリカル型装置の閉じ込め改善に関する研究					
	京都大学エネルギー理工学研究所	大	引	得	弘	 7
(8)	「ヘリカル型定常炉」作業会:低放射化材料の開発					
	東北大学金属材料研究所	松	井	秀	樹	 8
(9)	ヘリカル型定常炉ブランケット設計に関する研究					
	東京大学工学部	田	中		知	 9
(10)	溶融塩トリチウム増殖材料FLIBEと構造材料との両立	立性				
	東京大学工学部	H	中		知	 10
(11)	ヘリカル型核融合炉の炉心システム解析					
	代表者:核融合科学研究所	Ш	崎	耕	造	
	世話人:	西	村	清	彦	 11
(12)	FFHR構造用低放射化フェライト鋼の破壊・疲労特性	上評個	fi			
. ,	京都大学エネルギー理工学研究所	香	- 山		晃	 12
					-	
2-	A. 装置本体設計・建設及びR&D(本体)					
(1)	LHDダイバータ設計研究					
` ,	核融合科学研究所	大	薮	修	義	13
(2)	大型へリカル装置第一壁・ダイバータ板設計と試作		2/	12	3~	
(-/	核融合科学研究所		Ħ	信	阳	 14
(3)	LHDプラズマ対向壁の総合評価	23	ш	111	/3	
(5)		ıiı	科	俊	旗	 15
(4)	LHD用高 Z ダイバータ機器モジュールの評価試験	щ	11	1~	MI	10
` ' '		士	H	直	点	 16
(5)	LHDの真空系設計および第一壁コンディショニング					 1
(5)	核融合科学研究所					 17
(6)	プラズマ生成用燃料注入技術の開発と応用実験の検		111	心	ت	 1 /
(3)			ш	2/	司	15

(7)	大型ヘリカル装置の制御システム研究						
	代表者:核融合科学研究所	山	崎	耕	造		
	世話人:	渡	辺	清	政		19
(8)	LHDダイバータ板用炭素系材料と無酸素銅との接合	の耐熱	執衝	撃性の	の評価	15	
	京都大学工学部	奥		達	雄		20
(9)	被損傷材料の微小体積強度評価法の高度化						
	東北大学金属材料研究所	栗	下	裕	明		21
(10)	荷電交換中性粒子の挙動と制御の研究						
	筑波大学プラズマ研究センター	中	嶋	洋	輔		22
(11)	粒子線による黒鉛材料の酸化作用						
	愛媛大学工学部	中	山	祐	輔		23
(12)	プラズマ対向材の高フルーエンス粒子照射						
	大阪大学大学院工学研究科	上	田	良	夫		24
(13)	ボロン化対向壁の水素リテンションと酸素ゲッタリ	ング					
	北海道大学工学研究科	日	野	友	明		25
(14)	LHDのD-D実験におけるトリチウム挙動と安全管理	里技術	:				
	富山大学水素同位体機能研究センター	松	山	政	夫		26
(15)	ワークステーションを用いたデータ収集・解析・制	御シ	ステ	ムの	研究		
	松坂大学情報処理センター	奥	村	晴	彦		27
(16)	定常運転における能動粒子制御法の開発研究						
,	核融合科学研究所大型ヘリカル研究部	中	村	幸	男		28
(17)	強制対流臨界熱流束の研究						
	京都大学エネルギー科学研究所	塩	津	正	博		29
(18)	高磁場中での気体の流れと反応 ―安全性に関する基	き礎研	究一	-			
, ,	広島大学工学部	西	野	信	博		30
2	-B. 装置本体設計・建設及びR&D (超伝導)						
(1)	大型ヘリカル装置用超伝導コイルの製作と試験						
	核融合科学研究所	佐	藤		隆		31
(2)	大型超伝導コイルの安定性と保護の研究						
	核融合科学研究所	佐	藤		隆		32
(3)	核融合炉用先進超伝導導体の研究						
	東海大学工学部	太刀	JIII	恭	治		33
(4)	ポロイダルコイル用超伝導導体のパルス通電時交流	領失					
	鹿児島大学工学部	住	吉	文	夫		35
(5)	超伝導ケーブルの交流損失と安定性に関する研究						
	高エネルギー加速器研究機構	新	富	孝	和		36
(6)	素線間接触電気抵抗・接触熱伝導率と超伝導より線	镍	の安	定性			
	横浜国立大学工学部	雨	宮	尚	之		37
(7)	アルミニウム母材を有する大容量超伝導導体の過渡	安定	性評	価と	保護(に関する研究	
	早稲田大学理工学部			敦			38
(8)	極低温における大型超伝導マグネット候補材料の機						
` ,	東北大学大学院工学研究科	進	藤	裕	英		39
(9)	磁気結合した超伝導コイル群の高速高精度制御			,			
·- /	核融合科学研究所	カ	石	浩	孝		40
(10)	超伝導・極低温電気絶緑の研究	•	_		•		
/	豊橋技術科学大学工学部	小	﨑	正	光		41

	加圧超流動による超伝導コイルの準安定化						
•	日本大学理工学部原子力研究所	小	林	久	恭	42	2
(12)	大型ヘリカル装置用超伝導導体および支持材料の極低	氏温	強度	評価			
(1-)	核融合科学研究所	西	村		新	4′	3
(13)	大型ヘリカル超伝導磁石用非金属材料の開発						
(15)	大阪大学産業科学研究所	岡	田	東	_	4	4
(14)	大型超伝導マグネットシステムの監視・制御・保護に	方式	に関	する	研究		
(1-)	成蹊大学工学部		郷局		猛	4	5
(15)	大型超伝導コイル応用のための高温超伝導体の磁束量			-			,
(15)	東京大学工学部附属原子力工学研究施設	宮			Ξ		6
(16)	大型超伝導コイルの超流動冷却技術 その2	ы		<i>K</i> _	_	7	U
(10)	核融合科学研究所	佐	藤	定	男	4'	7
(17)	超伝導導体接続部の高電流密度化に関する研究	M.	際	疋	71	4	/
(17)			चार	- #11	_		_
()	北海道大学工学研究科		西田山	利	·只 · 分士 ·	48 	8
(18)	ケーブル超伝導導体に短絡部を設けることによる変動		_			去の研究	
, ,	横浜国立大学工学部	塚	本	修	巳	49	9
(19)	超伝導導体の横圧縮歪み効果に関する研究						
	上智大学理工学部		尾	智	明	50	0
(20)	素線動力学シミュレーションを用いたCICCの安定性	解析					
	大阪大学産業科学研究所	西	嶋	茂	宏	5	1
(21)	偏流防止に関わる課題						
	成蹊大学工学部	_	ノ宮	3	晃	52	2
(22)	超流動へリウム中の実規模導体からの3次元的熱流動	助特	性				
	京都大学エネルギー科学研究科	塩	油	正	博	52	2
	京仰人子エイルヤー科子研究科	<u></u>	件	11.	一分	<i>J</i> .	3
	京都人子上不ルキー科字研先科	- m	件	11.	一	J.	3
3			件	11.	1会	J.	3
3		4	件	11.	l Q	J.	3
3 (1)							3
	. 加熱機器設計及びR&D						
	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効3	率の	改善		するイ	研究	
(1)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効≤ 名古屋大学工学研究科	率の	改善		するイ	研究	4
(1) (2)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部	率の 門	改善田	に関	するイ	研究 52	4
(1) (2)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源	率の 門 中	改善田 村	に関	するイ	研究 52	4
(1) (2)	 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 	率の 門	改善田	に関	するd 清 二	开究 	4
(1) (2) (3)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会	率門 中 松	改善村 岡	に関	するは清二字	研究 	4 5
(1)(2)(3)(4)	 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効果 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 	率門 中 松 嘩	改田 村 岡 道	に関	する 清 二 守 恭	开究 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	4 5
(1) (2) (3)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイタ	率門 中 松 嘩り	改田 村 岡 道源	に関 ま	する 清 二 守 恭 化	研究	4 5 6 7
(1) (2) (3) (4) (5)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイター 福井大学工学部	率門 中 松 嘩	改田 村 岡 道	に関	する 清 二 守 恭	开究 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	4 5 6 7
(1)(2)(3)(4)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイター 福井大学工学部 大電力ミリ波用真空窓の冷却特性に関する研究	率門 中 松 嘩り出	改田 村 岡 道源原	に関 圭 の 戦	する 清 二 守 恭 化	研究	4 5 6 7
(1) (2) (3) (4) (5)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイス 福井大学工学部 大電力ミリ波用真空窓の冷却特性に関する研究 金沢工業大学	率門 中 松 嘩り出 森	改田 村 岡 道源原 茂	に関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	する 清 二 守 恭化 移	研究	4 5 6 7 8
(1) (2) (3) (4) (5) (6)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイクを 福井大学工学部 大電力ミリ波用真空窓の冷却特性に関する研究 金沢工業大学 核融合科学研究所	率門 中 松 嘩り出 森	改田 村 岡 道源原 茂	に関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	する 清 二 守 恭化 移	研究	4 5 6 7 8
(1) (2) (3) (4) (5)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイクを表す。 大電力ミリ波用真空窓の冷却特性に関する研究 金沢工業大学 核融合科学研究所 負イオン方式NBIの技術開発とLHDへの適用	率門 中 松 嘩り出 森下の門 中 松 嘩り出 森下	改田 村 岡 道源原 茂	に関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	す清 二 守 恭化孝 藤 元	研究 56	4 5 6 7 8
(1) (2) (3) (4) (5) (6)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイス 福井大学工学部 大電力ミリ波用真空窓の冷却特性に関する研究 金沢工業大学 核融合科学研究所 負イオン方式NBIの技術開発とLHDへの適用 核融合科学研究所	率門 中 松 嘩り出 森下の門 中 松 嘩り出 森下	改田 村 岡 道源原 茂	に関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	する 清 二 守 恭化 移	研究	4 5 6 7 8
(1) (2) (3) (4) (5) (6)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイを 福井大学工学部 大電力ミリ波用真空窓の冷却特性に関する研究 金沢工業大学 核融合科学研究所 負イオン方式NBIの技術開発とLHDへの適用 核融合科学研究所 定常大電力ミリ波用ブリュースター窓の開発	率門 中 松 嘩り出 森下 金	改田 村 岡 道源原 茂 子	に関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	す清 二 守 恭用孝 藤 修	研究 5.	4 5 6 7 8
(1) (2) (3) (4) (5) (6) (7) (8)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効率 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイクを表す。 大電力ミリ波用真空窓の冷却特性に関する研究 金沢工業大学 核融合科学研究所 負イオン方式NBIの技術開発とLHDへの適用 核融合科学研究所 定常大電力ミリ波用ブリュースター窓の開発 核融合科学研究所	率門 中 松 嘩り出 森下の門 中 松 嘩り出 森下	改田 村 岡 道源原 茂	に関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	す清 二 守 恭化孝 藤 元	研究 56	4 5 6 7 8
(1) (2) (3) (4) (5) (6)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効理 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイクを表別である。 本書のでは、一般では、一般では、一般では、一般では、一般では、一般では、一般では、一般	率門 中 松 嘩り出 森下 金 下	改田 村 岡 道源原 茂 子 妻	に関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	す清 二 守 恭化孝 藤 修 隆	研究 5.	4 5 6 7 8
(1) (2) (3) (4) (5) (6) (7) (8) (9)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効理 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイを 福井大学工学部 大電力ミリ波用真空窓の冷却特性に関する研究 金沢工業大学 核融合科学研究所 負イオン方式NBIの技術開発とLHDへの適用 核融合科学研究所 定常大電力ミリ波用ブリュースター窓の開発 核融合科学研究所 負イオンNBIシステム用光中性化セルの基礎研究 東北大学大学院工学研究科	率門 中 松 嘩り出 森下 金	改田 村 岡 道源原 茂 子	に関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	す清 二 守 恭用孝 藤 修	研究 5.	4 5 6 7 8
(1) (2) (3) (4) (5) (6) (7) (8) (9)	. 加熱機器設計及びR&D 光脱離法による水素負イオン源の診断とその生成効理 名古屋大学工学研究科 内部金属アンテナを用いる誘導RF負イオン源の開発 名古屋大学工学部 容量結合型RFイオン源 三重大学教育学部 【ミリ波加熱技術】に関する作業会 代表者 準光学ジャイロトロンによる計測用周波数可変マイクを表別である。 本書のでは、一般では、一般では、一般では、一般では、一般では、一般では、一般では、一般	率門 中 松 嘩り出 森下 金 下	改田 村 岡 道源原 茂 子 妻	に関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	す清 二 守 恭化孝 藤 修 隆	研究 5.	4 5 6 7 8

(11))大電力ミリ波伝送回路の開発	
(11)	The second secon	64
(12)) LHDにおけるICRF速波・遅波加熱の検討	
(12)	The Author State of the State o	65
4	4. 計測機器設計及びR&D	
•	1. H	
(1)	LHD計測のための高出力・高安定FIR(遠赤外)レーザーの開発	
(1)	中部大学工学部 岡島茂樹	66
(2)		
(2)	核融合科学研究所 笹 尾 真実子	67
(3)		0.
(3)	核融合科学研究所 須 藤 滋	68
(4)		00
(4)	琉球大学教育学部 石 黒 英 治	69
(5)		0)
(3)		70
	物體百件子明九別 人 話 呪	70
_	5. 長期的開発研究	
3	5. 長期的開発研究	
(4)	- 11回のとよの各人よい原則於 - いとが共産が協計の研究	
(1)		71
(0)		······································
(2)		
(-)	名古屋大学工学研究科 庄司多津男、坂和洋一	72
(3)		a a
7.3	広島大学工学部 西野信博	
(4)		
	7/10/20/7	74
(5)		
	177100 0	75
(6)		
	東海大学総合科学技術研究所 河 村 和 孝	76
(7)		
		······ 77
(8)		
(9)		
		79
(10)	0) エッジプラズマに係わる低エネルギー不純物イオンと分子との衝突による電荷	移行反応断面積の測定
		80
(11)	1) 超長時間磁場計測用回転プローブの試験・改良	
	九州大学応用力学研究所 伊 藤 智 之	81
(12)	2) グラファイト材へのリチウムコーティングにおけるプラズマ・表面相互作用	
	名古屋大学工学研究科 豊田浩孝	82
(13)	3) 動的ガスターゲットダイバータ模擬実験	
	名古屋大学大学院工学研究科 大野哲靖	83
(14)	4)プラズマ流測定のための方向性プローブの最適化の検討	
	横浜国立大学工学部 津 島 晴	84

(15)	電子サイクロトロン共鳴プラズマの高密度化とマイ	クロ	波伝	播					
•	九州大学大学院総合理工学研究科 教授	河	合	良	信		•••••	•••••	85
(16)	炭化水素分子の電子散乱断面積測定								
\ - <i>'</i>	大同工大 工	近	藤	芳	孝				86
(17)	燃料注入と粒子バランスに関する実験研究								
(,	三重大学教育学部	松	岡		守		•••••		87
(18)	プラズマ中性化セルの開発	,	. •		•				0,
(10)	東北大学工学部電気工学科	安	藤		晃				88
(19)	TPD-IIにおける非平衡再結合プラズマの生成とその			!	70				00
(1)	広島大学工学部	尾	田田	· 年	充			•••••	90
(20)	核融合におけるエネルギー変換システムの基礎研究		щ	7	76				09
(20)	核融合科学研究所プラズマ制御	Ц	П	化十	は			•••••	00
		щ	щ	11-7	CED		•	••••••	90
	Ⅱ. CHS共同研究								
(1)	CHSにおける閉じ込め・加熱実験(所内主導型)								
	核融合科学研究所大型ヘリカル研究部	松	岡	啓	介			•••••	91
(2)	サブミリ波ジャイロトロンを光源とする小振幅密度	[揺動	の散	乱計	測				
	福井大学工学部	出	原	敏	孝				92
(3)	周期的崩壊現象								
	核融合科学研究所	伊	藤	公	孝				93
(4)	高速Haトモグラフィー装置の開発				•				
. ,	東京大学大学院理学系研究科	遠	Ш	濶	志		•••••	•••••	94
(5)	電子のエネルギー分布関数のトロイダル異方性と非	局所							, ,
`-'	九州大学応用力学研究所	図	子		樹			•••••	95
(6)	レーザーイメージング法を用いたCHSプラズマ中の	-)密度:	-						,,,
ζ-,	福岡工業大学工学部	松	尾						96
	121 - 212 C - 2 12	_	, ,	2.	_				70
	■. 理論共同研究								
(1)	自己組織化の理論体系化								
	核融合科学研究所	佐	藤	哲	也				97
(2)	非線形物理における新しい表現法の理論的研究	•			_				
	核融合科学研究所	佐	藤	哲	也				98
(3)	自己組織化における非線形ダイナミクスの役割	_	744	-	_				,,
(- /	東工大	31:16	原和表	‡ .	広島	皇士	入江治行		
	静岡大			~\ -\		Z科技大	南部充宏		
	核融合研		島尹を	-	東コ		柳沢剛	••••••	00
(4)	プラズマ閉じ込めの新概念	4) D	47.7	4,/	<i>~</i> _	-/\	ניפין אטיופר		22
``'	核融合科学研究所	横	山	雅	之			••••	100
(5)	トーラス・プラズマ閉じ込めに関連する基礎的理論			1性	٨	***************************************	***************************************	•••••	100
(3)	ドーフへ・ファスマ闭し込めに関連する基礎的程識 核融合科学研究所			妆	+#-			•••••	101
(6)		洲	鎌	英	雄	•••••	•••••••••••	***************************************	101
(0)	閉じ込め改善と径電場の研究 按勲へ利誉研究所	μ.		ਜ਼					100
(7)	核融合科学研究所	佐の門が	貫	平		••••••	••••••	•••••	102
(1)	電磁波とプラズマの相互作用における新しい物理の			<i>I</i> —					
	筑波大学物理学系(プラズマ研究センター)	고	除	仁	工		•••••		103

(8)	微粒子プラズマの非線形帯電効果と波動の生成						
	八戸工業大学工学部	根	城	安	伯		104
(9)	LHD及びCHSプラズマの理論検討						
` '	核融合科学研究所	中	嶋	徳	嘉		· 105
(10)	超高速画像入力装置の時間・空間分解能の解析						
(/	北海道大学大学院工学研究科	榎	戸	武	揚		. 106
(11)	偏光プラズマ分光		,	- 1	•••		100
(/	京都大学工学研究科	藤	本		孝		· 107
	№. 大型シミュレーション研究						
(1)	微粒子を含むプラズマの構造形成						
	東北大学大学院工学研究科	石	黒	静	児		108
(2)	高速回転する磁気圏のダイナミクスに関するシミコ	レレー	ショ	ン研	究		
	広島大学理学部	草	野	完	也		
	広島大学大学院理学研究科	Ξ	好	隆	博		· 109
(3)	高温プラズマにおけるエネルギー緩和過程						
	広島大学理学部	草	野	完	也		. 110
(4)	活動銀河核における相対論的ジェットの形成機構						
	富山大学工学部	小	出	真	路		. 111
(5)	ジャイロ粒子・流体ハイブリッドコードによる鋸歯	函振動	崩壊	過程	のシ	ミュレーション	
, ,	山口大学工学部	内	藤	裕			. 112
(6)	トロイダル形状における電磁流体非線形不安定性の						
(-/	九州大学応用力学研究所		木	雅	敏		. 113
(7)	多種類イオンプラズマ中の不安定性と非線形現象	, ,	.,.	7,1	177		. 115
(,,	名古屋大学大学院理学研究科	*	澤	幸	治		114
(8)	球殻中における電磁流体力学的な構造形成ダイナミ	, .	1+	-1-	111		. 114
(0)	岡山理科大学工学部		*	+	##.		115
(9)	極短パルス電磁波・プラズマの相互作用のシミュレ				77		. 113
()	筑波大学物理学系(プラズマ研究センター)		條		_		116
(10)	核融合炉材料の中性子照射損傷形成のオーバーラッ						. 110
(10)	広島大学工学部	-	, .,,_		治	V 797	117
	以两八子工子 即	r	17	我	(口		. 11/
	V. 研究・企画情報に関する共同研	究					
(1)	核融合・エネルギー作業会						
	核融合科学研究所				弘		. 118
(2)	X線レーザーの利得の実験と原子過程シミュレーシ	/ョン	の比	較			
	日本原子力研究所関西研究所光量子科学センター	佐	4 7	木	明		. 119
(3)	磁場反転配位の閉じ込めと保持の理論研究						
	新潟大学理学部	石	田	昭	男		. 120
(4)	素過程データ作業会						
	核融合科学研究所	חל	藤	隆	子		121
(5)	CHARGE TRANSFER IN COLLISIONS OF C2+ IONS	WITH	HA	ATON	AS A	T LOW ke	
	V-ENERGIES:A POSSIBLE BOUND STATE OF CH2+						
	School of Allied Health Sciences, Yamaguchi Univ	versit	y N	1.Kin	nura		· 122

(6)	イオンリング入射による反転磁場配位プラズマの	加熱と	配位	維持	の検	討	
	大阪大学工学部	大	井	Œ			123
(7)	D ³ He炉心プラズマにおける核反応過程						
	九州大学工学部	中	尾	安	幸		124
(8)	<スピン偏極核融合の素過程>						
	名古屋大学理工科学総合研究センター	堀	Ш	直	顕		125
	WI. 安全管理に関する共同研究						
(1)	大型ヘリカル実験装置における安全性に関する研	F 究					
	核融合科学研究所安全管理センター	佐ク	人間	洋			129
(2)	土岐地区における環境放射線の測定						
	核融合科学研究所安全管理センター	宇	田	達	彦		130
(3)	大型プラズマ核融合実験施設における安全性に関	する研	究				
	核融合科学研究所安全管理センター	宇	田	達	彦		131
(4)	環境中トリチウムに酸化要因及び環境中のトリチ	ウムレ	ベル	変動	要因	の研究	
	茨城大学理学部	-	政	祐	輔		133
(5)	環境トリチウムのモニタリング手法の確立及び変	愛動要因	の解	明に	関す	る研究	
	九州大学工学部	岡	井	富	雄		134
	Ⅲ-A . 汎用計算機利用共同研究						
(1)	大型ヘリカル装置の磁場配位と閉じ込め解析						
	核融合科学研究所	山	崎	耕	造		
		庄	司		主		135
(2)	磁性材料を用いた磁場核融合装置の設計						
	核融合科学研究所	西	村	清	彦		136
(3)	有限ベータにおけるLHDプラズマの実時間制御						
	核融合科学研究所	西	村	清	彦		137
(4)	CHS実験に関連したプラズマのモデル計算						
, .	核融合科学研究所	岡	村	昇			138
(5)	CHS実験データ解析						
	核融合科学研究所			昇			139
(6)	LHD放電間の平衡及び輸送解析のためのデータグ						
/ _\							140
(7)	バウンス平均フォッカープランク方程式によるペ						
(0)				_	郎		141
(8)	ヘリカル系トーラスにおける理想及び抵抗性安気			HAZ	.,		
(0)					冶		142
(9)	ヘリオトロン/トルサトロン系におけるバルーニ						1.40
(10)	核融合科学研究所				新		143
(10)	LHD及びCHSにおけるプラズマ加熱の数値シミュ				尘		144
(11)	核融合科学研究所	1 个1	上	疋	我		144
(11)	Collisional Transport of Toroidal Plasma 校副会和学研究所	· 汪		怎	星		145
(12)	核融合科学研究所 LHDプラズマの動的挙動の解析	(工		衛	生		143
(12)	LIDノノスマの動的争動の解析 核融合科学研究所	: 油	ודג		太		146
	1久間 百 1千 子切 九 川	()文	7/1		A.		140

(13)	ヘリカル系プラズマにおける異常輸送モデルの研究						
	核融合科学研究所	洲	鎌	英	雄		147
(14)	ヘリカル系における磁気島生成及び磁気島のプラズマ	マ輸送	<u>美</u> への	つ影響	ş.		
	核融合科学研究所 理論・データ解析研究系	菅	野	龍太	郎		148
(15)	周辺プラズマの構造解析						
	核融合科学研究所	伊	藤	公	孝		149
(16)	ヘリカルトーラス系における輸送及び安定性と電場						
	核融合科学研究所	佐	貫	平	<u> </u>		150
(17)	トカマクとヘリカル系リアクターのシミュレーション	·					
	核融合科学研究所	天	野	恒	雄		151
(18)	プラズマ輸送モデルの検証と構築						
	東京大学大学院工学系研究科	小	Ш	雄			152
(19)	ヘリカル系におけるダイバータの研究						
	京都大学エネルギー理工学研究センター	大	引	得	弘		153
(20)	L=2ヘリカルヘリアックの研究						
	東京理科大学理工学部	小	越	澄	雄		154
(21)	負のピッチ変調L=1トルサトロンのMHD平衡						
	日本大学理工学部原子力研究所	椎	名	庄	_		155
(22)	3次元ジャイロ流体コードによる運動論的MHD現象	のシ	ミュ	レー	ショ	ン	
	山口大学工学部	内	藤	裕	志		156
(23)	負イオン生成に伴うプラズマ局所構造の形成						
	東北大学大学院工学研究科	石	黒	静	児		157
(24)	タンデムミラーにおけるプラグ電位形成に関する計算	算					
	筑波大学 プラズマ研究センター	片	沼	伊佐	夫		158
(25)	磁場対流におけるトーラスの崩壊						
	日本大学工学部	戸	次	直	明		159
(26)	MHD乱流とNS乱流における間欠性と秩序構造の研	究					
	名古屋工業大学生産システム工学科	後	藤	俊	幸		160
(27)	磁気流体波の非線形伝播と粒子加速						
	名古屋大学大学院理学研究科	大	澤	幸	治		161
(28)	プラズマ自由境界問題の数値解法						
	四日市大学環境情報学部	武	本	行	正		162
(29)	非線形MHD不安定とそれに伴う駆動型リコネクショ	ンの	MHI)シミ	ミュレ	ーション	
	国立天文台太陽物理学研究系	柴	田	-	成		163
(30)	2流体シミュレーションによる磁気リコネクションの	研究	Ē.				
	広島大学理学部	草	野	完	也		164
(31)	異常波のコンプトン散乱による相対論的電子ビーム	加速					
	愛媛大学理学部	管	谷	礼	爾		165
(32)	イオン源及びスパッタリングプラズマシミュレーシ	ョン					
	埼玉大学工学部	井	門	俊	治		166
(33)	応力の効果を考慮した電子速度分布関数に関する研	究					
	北海道大学量子エネルギー工学専攻	及	Ш	俊	_		167
(34)	プラズマ・核融合研究のための信号・画像処理法の	開発					
	富山県立大学工学部	岩	間	尚	文		168
(35)	タンデムミラーガンマ10の高周波を用いた高密度化						
	筑波大学プラズマ研究センター	市	村		真		169
(36)	ガンマ10における高温イオンの加熱・緩和過程に関	する	計算	機シ	ミュ	レーション	
	筑波大学プラズマ研究センター	中	嶋	洋	輔		170

(37)	ガンマ10における不純物イオンスペクトルの放射	強度の	研究				
	筑波大学物理学系	吉	Ш	Œ	志		171
(38)	RFPダイナモによる電子エネルギー損失機構						
	名古屋大学大学院工学研究科	佐	藤	紘			172
(39)	RFPダイナモによる異常粒子輸送のシミュレーシ	ョン解	折				
	大阪工業大学工学部	長	田	昭	義		173
(40)	高密度プラズマにおける荷電粒子輸送の研究						
	九州大学工学部	小	田	明	範		174
(41)	NBIシステムとNBI加熱の解析						
	核融合科学研究所	竹	入	康	彦		175
(42)	ヘリカルシステムにおけるray軌道と高周波加熱解	析					
	核融合科学研究所	久	保		伸		176
(43)	ミリ波─サブミリ波電磁波源の高性能化に関する	研究					
	東北大学電気通信研究所	横	尾	邦	義		177
(44)	電子加熱による電位形成の計算						
	筑波大学プラズマ研究センター	立	松	芳	典		178
(45)	非接触プラズマの沿磁力線構造解析						
	名古屋大学大学院工学研究科	高	村	秀			179
(46)	ダイバータ・SOLプラズマにおける非一様電場形	成と粒	子・	熱輸.	送への	の効果	
	名古屋大学理工科学総合研究センター	上	杉	喜	彦		180
(47)	プラズマの衝突・放射モデルの高速計算法の開発						
	広島大学工学部	尾					181
(48)	多種イオン同時衝撃下のプラズマ対向壁からのイ	オン反	射と	スパ	ッタ	リングのシミュレーション	
	徳島大学工学部	大	宅		薫		182
(49)	境界プラズマ・ダイバーター系における腐食のシ	ミュレ	ーシ	ョン	祥		
	岡山理科大学						183
(50)	イオン照射による酸化物中への電子的エネルギー	付与効:	果の	モデ	ル計算	算	
	名古屋大学工学部	松	波	紀	明		184
(51)	黒鉛および金属被覆黒鉛における水素同位体の動						
, ,	名古屋大学工学研究科						185
(52)	コンピューターシミュレーションによる核融合炉				研究		
, ,	名古屋工業大学工学部材料工学科	守	屋		健		186
(53)	D-3Heプラズマ加熱に対する核弾性衝突の影響						
, ,	九州大学工学部	松	浦	秀	明		187
(54)	偏極°H,°He,°H核融合反応の3体,4体計算						
(\	東京理科大学理工学部		立		祥		188
(55)	D³He/FRC核融合炉におけるDEC (直接エネルギ				的研	究	
/×	京都大学工学研究科		Ш		雄		189
(56)	核融合炉に組み込んだMHD発電内の弱電離プラズ				る研		
/ \	京都大学工学研究科	石	Ш	本	雄		190
(57)	カスプ型直接エネルギー変換器の数値解析						
/ \	北海道大学エネルギー先端工学研究センター		津	茂	男		191
(58)	核融合プラズマ推進システムの磁気ノズルにおけ	る流動	解析				
/×	九州大学大学院総合理工学研究科	中	島	秀	紀		192
(59)	超伝導コイルの超流動へリウムによる冷却特性						
(60)	九州大学工学部	福	田	.,,			193
(00)	放縁性セラミックス及び金属間化合物の照射損傷					験	
	九州大学工学部	木	下	智	見		194

(61)	トーラス系磁場配位の新概念						
	核融合科学研究所	横	山	雅	之		195
(62)	非一様プラズマにおける磁場渦生成機構とそれによ	る加	執過	程			
	核融合科学研究所	渡	邉	國	彦		196
(63)	軸対称磁場構造を持つヘリカル型装置の設計						
	核融合科学研究所	岡	村	昇			197
(64)	磁場反転配位の磁気流体力学的安定性						
	新潟大学理学部	石	田	昭	男		198
(65)	核融合炉材料中性子照射損傷組織発達における水素	. ^	リウ	ム原	子の	役割	
	広島大学工学部	下	村	義	治		199
(66)	Delta-f 法を用いたプラズマ輸送のシミュレーショ	ン					
	京都大学エネルギー理工学研究所	花	谷		清		200
(67)	プラズマ・壁 相互作用による放射						
	東京学芸大学教育学部	新	田	英	雄		201
(68)	少数自由度・大多数自由度モデルを用いた電磁流体	乱流	の研	究			
	九州大学応用力学研究所	矢	木	雅	敏		202
(69)	ジャイロトロン動作解析のためのPICコードの開発と	と解析	ŕ				
	核融合科学研究所	下	妻		隆		203
(70)	粒子-炉壁相互作用の基礎的研究						
	徳島大学工学部	森			郎		204
(71)	ヘリカルプラズマの3次元平衡と安定性の理論・数値	直研究	i				
	総合研究大学院大学	陳			勁		205
(72)	マイクロ波によるプラズマ診断のシミュレーション						
	筑波大学物理学系(プラズマ研究センター)	北	條	仁	士		206
(73)	大角度散乱を考慮したD-T Plasmaの中での α -粒子の	シミ	ュレ	ーシ	ョン		
	筑波大学物理学系	河	辺	隆	也		207
(74)	ガンマ10における半導体検出器を用いたX線計測及	び粒ー	子計	則に	関する	る計算	
	筑波大学プラズマ研究センター	平	田	真	史		208
(62) 非一様プラズマにおける磁場渦生成機構とそれによる加熱過程 核融合科学研究所 渡 邉 國 彦 196 (63) 軸対称磁場構造を持つヘリカル型装置の設計 核融合科学研究所 岡 村 昇 一 197 (64) 磁場反転配位の磁気流体力学的安定性 新潟大学理学部 石 田 昭 男 198 (65) 核融合炉材料中性子照射損傷組織発達における水素・ヘリウム原子の役割 広島大学工学部 下 村 義 治 199 (66) Delta-f 法を用いたプラズマ輸送のシミュレーション 京都大学エネルギー理工学研究所 花 谷 清 200 (67) プラズマ・壁 相互作用による放射 東京学芸大学教育学部 新 田 英 雄 201 (68) 少数自由度・大多数自由度モデルを用いた電磁流体乱流の研究 九州大学応用力学研究所 矢 木 雅 敏 202 (69) ジャイロトロン動作解析のためのPICコードの開発と解析 核融合科学研究所 下 妻 隆 203 (70) 粒子・炉壁相互作用の基礎的研究 徳島大学工学部 森 一 郎 204 (71) ヘリカルプラズマの3次元平衡と安定性の理論・数値研究 総合研究大学院 嗷 205 (72) マイクロ液によるプラズマが筋のシミュレーション 筑波大学物理学系 (ブラズマ研究センター) 北 條 仁 士 206 (73) 大角度散乱を考慮したD-T Plasmaの中での a 粒子のシミュレーション 筑波大学物理学系 河 辺 隆 也 207 (74) ガンマ10における半導体検出器を用いたX線計測及び粒子計測に関する計算							
	W-B. 汎用計算機利用共同研究						
(1)	プラズマ粒子・波動の非線形相互作用						
	愛媛大学理学部	須	Ш	正	雄		209
(2)	遠方銀河ジェットと高密度ガス雲の衝突のシミュレ	ーシ	ョン	研究			
	富山大学工学部	小	出	真	路		210
(3)	有限強度の磁場を考慮した大出力後進波発振器の動	作特	性の	解析			
	新潟大工学部	南		_	男		211
(4)	遅波導波管における電子ビームサイクロトロン不安	定性	の研	究			
	新潟大学工学部 助教授	小	椋		夫		212
(5)	リチウムコーティングにおけるプラズマ・表面相互	作用			-		
	名古屋大学工学研究科	菅	井	秀	郎		213
(6)	電子ライナックで発生する陽電子によるプラズマ計	-測			•		
	北海道大学工学部	藤	田	文	行		214
(7)	Electron Capture in Collisions of H*Ions with S Atoms ar	nd Its		-	Proce	ess below keV-Energies	
	School of Medical Sciences, Yamaguchi university		Kim				215
	•						

(8)	プラズマ中の不純物イオンの物理状態について						
•	核融合科学研究所研究企画情報センター	村	上		泉	216	
(9)	強結合プラズマの実験解析とシミュレーション						
	名古屋大学工学研究科	庄	司多	聿男、	坂和	I洋一、荒卷光利、上村鉄雄 ······· 217	
(10)	気体ダイバータ物理学に関係する衝突素過程の研究	ŗ. L					
•	東京理科大学基礎工学部	恩	田	邦	藏		
(11)	高圧力非熱平衡アークプラズマの基礎物性						
•	名古屋大学大学院工学研究科電気工学専攻	松	村	年	郎	219	
(12)	ダイバーター・トカマクのスクレイプ・オフ層プラ	ラズマ	の振	る舞い	/ 3		
,	成蹊大学工学部	宮	本	健	郎	220	
	Ⅷ. 研究会						
(1)	研究会「プラズマ科学の新しい展開」						
	名古屋大学工学研究科	高	村	秀		221	
(2)	高エネルギー密度プラズマの生成、診断及び応用						
	群馬大学工学部	平	野	克	己	224	
(4)	内部電流計閉じ込め配位の電流制御と配位維持						
	新潟大学理学部	石	田	昭	男	231	
(5)	大型装置計測のためのミリ波技術の開発						
	筑波大学プラズマ研究センター	間	瀬		淳	236	
(6)	ダイバータの化学と物理						
	名古屋大学理工科学総合研究センター	田	辺	哲	朗	242	,
(7)	トロイダルプラズマのアルフベン固有モードに関す	する物	理課	題			
	核融合科学研究所	東	井	和	夫		
(8)	球状トーラス研究会						
	東京大学大学院工学系研究科	桂	井		誠	231	
(10)	プラズマの大電力加熱研究会						
` '	代表者	渡	利	徹	夫	249	ı
(11)	計算機シミュレーションによる粒子一固体相互作用	用研究	会				
	岡山理科大学	Ш	村	泰	道	252	
(12)	核融合炉システムにおける重点的研究課題に関する						
	大阪大学大学院工学研究科	西	Л	雅	弘		;
(14)	金属系高Z高熱流束材料の開発と評価						
	東北大学大学院工学研究科	阿	部	勝	憲	260)
(15)	核融合熱流体システムに関する研究会						
, , ,	東北大学大学院工学研究科	戸	田	Ξ	朗	274	1
(16)	デザインウィンドウ評価のための実環境材料照射	挙動モ		開発			
	東京大学大学院工学研究科システム量子工学専攻	関	村	直	人	278	3
	sicf/sic複合材料の核融合炉への応用		• •				
, ,	京都大学エネルギー理工学研究所	香	山		晃	282	2
(18)	核融合炉材料の温度変動照射効果	-					
/	九州大学応用力学研究所	吉	田	直	亮		3
(19)	科学史視点からの核融合研究と産業技術のあり方	_ (研究					
,	名古屋大学名誉教授	福	井	崇	時	292	2
(20)	大型シミュレーション研究(研究会)		•	. •	•		
,	核融合科学研究所	佐	藤	哲	也		5
	- · · · · · · · · · · · · · · · · · · ·						