関して
解ゞ
BH2 >
- ·
∧ ∃
ini S
P9 0

よくわかる

最新 核融合の基本と仕組み

CONTENTS

	はじと	かに3
<基礎網	編>	
第】章	核關	融合の基礎 (核物理学)
	1-1	核融合とは?10
	1-2	物質と素粒子とは?
	1-3	強い力と核力とは? 14
	1-4	核エネルギー開発の歴史は?
	1-5	核融合が宇宙を進化させる?
	1-6	太陽は核融合で燃えている?20
	1-7	原爆と水爆の違いは?22
	1-8	トンネル効果で核融合反応?24
	1-9	質量欠損のエネルギーとは?
	1-10	核融合反応断面積と反応率は?28
	1-11	太陽と人工太陽の違いは?30
	1-12	地上での核融合の方式は?32
	1-13	第1世代、第2世代の燃料は?34
	1-14	ヘリウムやボロンの先進燃料は?36
	1-15	エキゾチックな核融合とは?38
	1-16	核融合は夢のエネルギーか?40

第二章	ノ:	フ人マの基礎(フラスマ物理字)	
	2-1	プラズマとは?44	
	2-2	自然界と実験室のプラズマは?46	į
	2-3	プラズマ中の電場は遮蔽される? 48	
	2-4	プラズマ振動はプラズマの原点? 50	
	2-5	プラズマ粒子は波乗りする?	
	2-6	磁場閉じ込めでの断熱不変量とは? 54	
	2-7	オープン磁場での粒子軌道は?	
	2-8	トーラス磁場での粒子軌道は?	
	2-9	プラズマの平衡とは? 60	
	2-10	プラズマの安定性とは?62	
	2-11	プラズマの安定化方法は?64	
	2-12	プラズマの輸送は?	
	2-13	放射によるエネルギー損失は?	
	2-14	プラズマの加熱は?70	
	2-15	アルファ粒子加熱は?72	
<炉心約	篇>		
第3章	地_	上に太陽を作る(核融合プラズマの物理)	
	3-1	核燃焼プラズマと着火温度とは? 76	j
	3-2	核融燃焼の条件は?78	3
	3-3	核融合動力炉のローソン条件とは?80)
	3-4	さまざまな核融合方式は? 82)

3-5 ミラー核融合は単純か?………………………84 3-6 トカマク核融合とは?………………………86 3-7 先進トカマク配位とは?…………………………… 88 3-8 ヘリカル核融合とは? ………………… 90 3-9 先進ヘリカル配位とは?………………92 3-10 その他の磁場閉じ込めは?……………94 3-11 慣性核融合とは? …… 96 3-12 その他の核融合方式は?………98 3-13 プラズマ閉じ込めの現状は? …………………… 100 3-14 核燃焼プラズマの現状は?……………………… 102

第6章 核融合炉発電の可能性(核融合システム工学)
6-1 核融合炉設計案はいろいろ?
6-2 コンパクト設計案は?
6-3 システム設計コードとLCAは?
6-4 コストやCO ₂ 排出量は?····································
6-5 核融合炉の資源は無限か?
6-6 トリチウムの安全性は?
6-7 核融合炉の安全性と廃棄物処理は?
<発展編>
- Julia viili v
第7章 核融合炉実用化への道のり(核融合研究開発)
7-1 世界の核融合研究開発は?
7-2 日本の核融合研究開発は?
7-3 ITERとは?
7-4 BA活動とは?······184
7-5 実験炉から動力炉へ?
7-6 核融合スタートアップ企業とは?
7-7 スタートアップの発電計画は?
第8章 エネルギーの未来を考える(核融合未来展望)
8-1 月面での核融合は?
8-2 核融合ロケットとは?
8-3 自然と人工の太陽エネルギー計画!
8-4 核融合から対消滅へ!
索引203
参考文献207

TOTAL

コラム1	新しい元素の創成! (日本初の新元素 「ニホニウム」)42
コラム2	極限プラズマとは? (クォーク・グルーオン・プラズマ)74
コラム3	(フォーフ・フルーオン・フラスマ) ************************************
コラム4	
コラム5	核融合技術は波及する! (大型超伝導マグネット、加熱装置)
コラム6	巨大科学技術の安全性を考える! (ヒューマンエラーと想定外事象) ·························176
コラム7	(ヒューマンエケーと)
コラム8	映画の中の「核融合」は? (『2001年宇宙の旅』と『バック・トゥ・ザ・フューチャー』)
	202