目 次

物理定数の値 xiii 序 論 xv

-

um Av

第1部 照射損傷過程

第1章 照射損傷イベント		3
1.1 中性子-核相互作用	1.2 イオンと原子の相互作用――――	9
1.1.1 弾性散乱 3	1.2.1 原子間ポテンシャル 9	
1.1.2 非弾性散乱 7	1.2.2 衝突キネマティクス 14	
1.1.3 (n,2n) 反応 8	1.3 エネルギー損失	22
1.1.4 (n,γ) 反応 9	1.3.1 エネルギー損失理論 23	
	1.3.2 飛程の計算 29	

第2章 原子の弾き出し―――

2.1 弾き出しの初等理論 37	2.2.4 結晶性の効果 46
2.1.1 弾き出し確率 37	2.3 弾き出し断面積 53
2.1.2 原子弾き出しの Kinchin と Pease (K-P) のモ	2.3.1 弾性散乱 53
デル 38	2.3.2 非弾性散乱 53
2.1.3 弾き出しエネルギー <i>3</i> 9	2.3.3 (n,2n) および (n,y) 弾き出し 53
2.1.4 電子的エネルギー損失の限界 <i>42</i>	2.3.4 K-Pモデルに対する修正と全弾き出し断面積
2.2 K-P 弾き出しモデルの修正 43	54
2.2.1 エネルギーバランスにおける E』の考察 43	2.4 弾き出し速度54
2.2.2 現実的なエネルギー伝達断面積 43	2.5 特性変化と昭射量の相関56
2.2.3 電子励起によるエネルギー損失 <i>44</i>	
	2.6 荷電粒子照射による弾き出し――― <i>57</i>

-37

-63

第3章 損傷カスケード-----

3.1	弾き出し平均自由行程63	3.4.1 二体衝突近似(BCA)法 67	
3.2	ー次反跳スペクトル―――64	3.4.2 分子動力学(MD)法 68	
	キュム じににたてきり ざいちった じけま	3.4.3 キネティックモンテカルロ(KMC)法	71
3.3	リスケート損傷エイルキーとリスケート体偵	3.5 カスケード発達の段階	<i>—73</i>
	66	2 (カフケード内での欠陥の送動	76
3.4	照射損傷のコンピュータシミュレーション <i>―6</i> 6	3.6 ガスケード内での人間の手動	/4

-147

-187

-239

第7章 転位微細組織-

.

-101

7.1 転位線	7.3.2 クラスターの型 164
7.1.1 転位の運動 149	7.3.3 クラスター移動度 165
7.1.2 転位の記述法 150	7.4 拡張欠陥————————————168
7.1.3 変位, 歪み, および応力 151 7.1.4 転位のエネルギー 153	7.5 有効欠陥生成————————————————————————————————————
7.1.4 転位のエネルマ 155 7.1.5 転位の線張力 <i>154</i>	7.6 転位ループの核生成と成長170
7.1.6 転位に及ぼす力 155	7.6.1 ループ核生成 171
7.1.7 転位間の相互作用 <i>157</i> 7.1.8 拡張転位 <i>158</i> 7.1.0 キンクレジュグ 150	 7.6.2 クラスタリンク理論 1/4 7.6.3 クラスターダイナミクス法によるクラスター 発達のモデル化 175
7.1.9 インクとショク 159 7.2 積層欠陥ループと積層欠陥四面体159	7.7 転位ループ成長 176
7.3 欠陥クラスター161	7.8 回 復
7.3.1 クラスターを形成する欠陥の割合 161	7.9 格子間原子型ループ微細組織の発達——— <i>179</i>

第8章 照射誘起ボイドと気泡------

8.1

8.2

8.3

9.1 9.2 9.3 9.4

9.5 9.6

3.1 ボイド核生成	-188	206
8.1.1 平衡ボイドサイズ分布 188		8.3.4 損傷速度依存性 208
8.1.2 ボイド核生成速度 189		8.3.5 照射変数シフト 209
8.1.3 不活性ガスの効果 193		8.3.6 生成バイアスの効果 211
8.1.4 生成バイアスのもとでのボイド核生成	196	8.3.7 応力依存性 216
・2 ボイド成長にやける欠陥シンクの取り扱い		8.3.8 RISの影響 218
1.2 ホイト成長における人間シングの取り扱い		8.3.9 ボイド格子 218
	-197	8.3.10 微細組織と組成の影響 220
8.2.1 シンク表面における欠陥吸収速度と濃度		8.3.11 原子炉運転履歴の効果 226
<i>198</i> 8.2.2 点欠陥バランス <i>200</i>		8.4 気 泡226
.3 ボイド成長	-201	8.4.1 気泡の力学 228
	201	8.4.2 成長則 229
8.3.1 温度依存性 203		8.4.3 転位ループパンチングによる気泡成長 230
8.3.2 損傷量依存性 204		8.4.4 気泡格子 231
8.3.3 バイアス付きシンクとしての転位の役割		8.4.5 ヘリウム生成 <i>231</i>

第9章 照射下相安定性--

照射誘起偏析と照射誘起析出 239 反跳溶解 240 照射誘起不規則化 244 非整合析出物の核生成 247 整合析出物の核生成 250	 9.6.1 フェライト-マルテンサイト鋼 252 9.6.2 オーステナイトステンレス鋼 255 9.7 準安定相 9.7.1 規則-不規則変態 257 9.7.2 結晶構造変態 257 9.7.3 準結晶生成 258 	256
整合析出物の核生成	9.7.2 結晶構造変態 257 9.7.3 準結晶生成 258	
照射誘起析出の例――――――――――252	9.8 アモルファス化	-258

4.1 照射誘起欠陥の性質83	4.3.1 拡散の巨視的記述 89	
4.1.1 格子間原子 83	4.3.2 拡散の機構 89	
4.1.2 複格子間原子 85	4.3.3 拡散の微視的表現 <i>91</i>	
4.1.3 格子間原子不純物複合体 86	4.3.4 ジャンプ頻度 <i>Γ 92</i>	
4.1.4 原子空孔 86	4.3.5 ジャンプ頻度ω <i>93</i>	
4.1.5 多重空孔 86	4.3.6 Dの方程式 94	
4.1.6 溶質-欠陥と不純物-欠陥クラスター 86	4.4 相関拡散	95
1.2 点欠陥形成の熱力学86	4.5 多元系における拡散	96
4.3 点欠陥の拡散	4.6 高速拡散経路に沿う拡散	97

第5章 照射促進拡散と欠陥反応速度論

5.1 点	₹欠陥バランス方程式────	<i>—101</i>
5.1.	.1 領域 I :低温,低シンク密度 102	
5.1.	.2 領域 2 : 低温,中間シンク密度 104	
5.1.	.3 領域 3 :低温,高シンク密度 104	
5.1.	.4 領域4:高温 105	
5.1.	.5 点欠陥バランス方程式の特性 106	
5.1.	.6 単純な点欠陥バランスモデルの不足要因	
	107	
5.1.	.7 カスケードが存在する場合の点欠陥バ	ランス
	方程式 107	
5.2 照	系射促進拡散	<i>—109</i>
5.3 次	マ陥反応	
5.3.	.1 欠陥生成 112	
5.3	.2 再結合 112	

5.4 反応速度律速過程	113
5.4.1 欠陥-ボイド相互作用 113	
5.4.2 欠陥-転位相互作用 113	
5.5 拡散律速反応	——113
5.5.1 欠陥-ボイド反応 113	
5.5.2 欠陥-転位反応 115	
5.6 混合律速	115
5.7 欠陥-粒界反応	116
5.8 整合析出物と溶質原子	116
5.9 点欠陥の回復	117

5.3.3 シンクへの消滅 112 5.3.4 シンク強度 112

第2部 照射損傷の物理的効果

12)
B成変化の影響―― 135 効果 137 こおける RIS の例 139 RIS 141 もの効果 143
う つ え え う う う う え 交 に う う う え う う う き う う 道

9.8.1	化合物の生成熱と結晶構造の違い	259	
9.8.2	化合物の固溶範囲と臨界欠陥密度	260	c

	9.8.3	アモルファス化の熱力学と速度	度論 262
--	-------	----------------	--------

9.9 原子炉炉心構成要素合金中の相安定性---267

第1〇 章 イオン照射に独特な効果	273
10.1 イオン照射技術 273 10.2 組成変化 275 10.2 1 スパッタリング 275	10.3.1 粒成長 290 10.3.2 集合組織 291 10.3.3 転位微細組織 291
10.2.1 バンフランマンジェンジョン 10.2.2 ギブス吸着 279 10.2.3 反跳注入	10.4 高線量ガス注入:ブリスタリングと表層剥離 <i>292</i>
10.2.4 カスケード(等方的,弾き出し)混合 281	10.5 固相および不活性ガス気泡格子
10.2.5 衣田和瓜及変化に影響を与える過程の組み合わせ 287 わせ 287 10.2.6 イオン注入中の注入粒子再分布 288	10.7 イオンビームアシスト成膜 (IBAD)297 10.7.1 微細組織 297
10.3 イオン注入のその他の効果――― <i>290</i>	10.7.2 残留応力 302 10.7.3 薄膜集合組織 307

第11章 イオンによる中性子照射効果の模擬−	315
11.1 中性子照射の代替としてイオン照射を用いる ことの動機	11.4.1 電子 322 11.4.2 重イオン 323
11.2 照射損傷のイオン照射に関係した側面の概観 316	11.4.3 陽 f [.] 324 11.5 粒子照射における照射パラメータ――― <u>324</u>
11.3 RIS の粒子タイプに対する依存性318 11.4 種々の照射粒子タイプの利点と欠点321	11.6 陽子照射による中性子照射損傷の模擬― <i>326</i> 11.7 中性子照射損傷の自己イオン照射による模擬 220

第3部 照射損傷の機械的および環境的効果

第12章 照射硬化と変形--

12.1 弾性	および塑性変	5形	-338
12.1.1	弹性 33	38	
12.1.2	塑性 34	40	
12.1.3	引張試験	341	
12.1.4	降伏強度	342	
12.2 照射	硬化		-343
12.2.1	転位源硬化	344	1
12.2.2	摩擦硬化	345	

12.2.3	硬化機構の重ね	な合わせ 、	350	
12.2.4	多結晶体の硬化	占 352		
12.2.5	照射硬化の飽和	11 <i>353</i>		
12.2.6	硬化の実測値。	と予測値の比	較 355	
12.2.7	照射焼鈍硬化	357		
12.2.8	硬さと降伏強度	度の間の相関	357	
2.3 照射到	金属の変形──			-359
12.3.1	変形局在化	361		
12.3.2	変形機構図	363		

-337

目	次	xi

-397

-429

第13章 照射クリープと成長――

13.1 熱ク	リープーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	—369
13.1.1	転位クリープ <i>371</i>	
13.1.2	拡散クリープ <i>374</i>	
13.2 照射	クリープ	-375
13.2.1	応力誘起優先ループ核生成(SIPN)	376
13.2.2	応力誘起優先吸収(SIPA) 378	
13.2.3	優先吸収辷り(PAG)による上昇-辷り)
	379	
13.2.4	転位バイアスで駆動される上昇-辷り	
	380	
13.2.5	遷移クリープ 381	

13.2.6 ループアンフォールティング 382 13.2.7 回復クリープ 383 13.2.8 拡散クリープ:何故照射の効果がないのか 384 13.2.9 理論とクリープデータの比較 384 13.2.10 照射修正変形機構図 387 13.3 ジルコニウム合金の照射成長とクリープ---387 13.3.1 照射されたジルコニウム合金の微細組織 388 13.3.2 照射成長 389

13.3.3 照射クリープ *391*

第14章 破壊と脆化-

破壊のタイプ	
金属の凝集強度	39 7
破壞力学	
破壊力学試験	
弹塑性破壊力学————————	
脆性破壊	
フェライト鋼の照射誘起脆化―――	
4.7.1 切欠き試験片衝撃試験 <i>407</i>	
4.7.2 DBTT と上部棚エネルギーの低下	409
4.7.3 マスターカーブ法 <i>410</i>	
4.7.4 脆化の程度に影響を及ぼす因子	411
	 破壊のタイプ 金属の凝集強度 破壊力学 破壊力学試験 弾塑性破壊力学 脆性破壊 フェライト鋼の照射誘起脆化 4.7.1 切欠き試験片衝撃試験 407 4.7.2 DBTTと上部棚エネルギーの低下 4.7.3 マスターカーブ法 410 4.7.4 脆化の程度に影響を及ぼす因子

14.7.5 フェライト-マルテンサイト鋼の脆化 414 14.7.6 焼鈍と再照射 415 14.7.7 疲 労 415 14.8 低温から中間温度におけるオーステナイト合 金の破壊と疲労 417 14.8.1 破壊靭性に及ぼす照射の効果 417 14.8.2 疲労に及ぼす照射の効果 419 14.9 高温脆性 420 14.9.1 粒界ボイドと気泡 420 14.9.2 粒界辷り 423 14.9.3 粒界亀裂成長 424

14.9.4 破壞機構図 425

第15章 腐食と応力腐食割れの基礎-

15.1 腐食の形態	<i>—429</i>
15.2 腐食の熱力学	<i>—432</i>
15.2.1 腐食の駆動力 432	
15.2.2 EMF 系列と符号の規約 433	
15.2.3 安定性図 (Pourbaix 図) 436	
15.3 腐食の速度論	
15.4 分 極	
15.4.1 混成電位理論 445	
15.4.2 ガルバニ対 446	
15 4 2 マノニビ/カソニド西巷比 440	

15.4.4 15.4.5	複数カソード反応 448 その他の種類の分極 448
15.5 不働	態452
15.5.1	不働態の理論 453
15.5.2	酸中の活性態-不働態金属の挙動 454
15.5.3	活性態-不働態腐食挙動に影響する因子
	455
15.5.4	不働態の制御 456

- 15.5.5 活性態-不働態金属のガルバニ対 457
- 15.5.6 不働態金属の孔食 458
- 15.6 すき間腐食————*459*

xii 目 次

15.7 応力腐食割れ (SCC)460 460	15.7.6 SCC の速度論 466
15.7.1 SCC 試験 461	15.7.7 応力腐食割れの機構 466
15.7.2 SCC 過程 462	15.7.8 亀裂伝播の予測モデル 468
15.7.3 金属学的条件 463	15.7.9 力学的破壊モデル 468
15.7.4 亀裂発生と伝播 463	15.7.10 腐食疲労 469
15.7.5 SCC の熱力学 464	15.7.11 水素脆化 470

第16章 腐食と環境支援割れに及ぼす照射の効果------

16.1 水化学に及ぼす照射の効果476	16.3.2 フェライト系合金 488	
16.1.1 放射線分解とその腐食電位に及ぼす影響	16.4 IASCC の機構	
476 16.1.2 酸化に及ぼす腐食電位の効果 478 16.1.3 IASCC に及ぼす腐食電位の効果 479	16.4.1 粒界クロム欠乏 <i>489</i> 16.4.2 照射硬化 <i>490</i> 16.4.3 が形モード 401	
16.2 酸化に及ぼす照射の効果 481	16.4.3 変形モード 497 16.4.4 IASCC のモデル 492 16.4.5 選択的内部酸化 493	
16.3 応力腐良割れに及は9 照射の効果―――482 16.3.1 オーステナイト合金 482	16.4.6 照射誘起クリープ 493	

索引 497